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A B S T R A C T 

Young δ Scuti (Sct) stars hav e pro v en to be valuable asteroseismic targets, but obtaining robust uncertainties on their inferred 

properties is challenging. We aim to quantify the random uncertainties in grid-based modelling of δ Sct stars. We apply Bayesian 

inference using nested sampling and a neural network emulator of stellar models, testing our method on both simulated and real 
stars. Based on results from simulated stars, we demonstrate that our method can reco v er plausible posterior probability density 

estimates while accounting for both the random uncertainty from the observations and neural network emulation. We find that 
the posterior distributions of the fundamental parameters can be significantly non-Gaussian and multimodal, and have strong 

covariance. We conclude that our method reliably estimates the random uncertainty in the modelling of δ Sct stars and paves the 
way for the investigation and quantification of the systematic uncertainty. 

Key words: asteroseismology – methods: data analysis – methods: statistical – stars: fundamental parameters – stars: variables: 
δ Scuti. 
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 I N T RO D U C T I O N  

tellar ages for individual stars are notoriously difficult to measure 
Soderblom 2010 ). One method is to model a cluster with isochrones,
hich is particularly sensitive to high-mass stars at the main- 

equence (MS) turn-off (Lipatov, Brandt & Gossage 2022 ). Other 
echniques, such as the lithium depletion boundary (e.g. Galindo- 
uil et al. 2022 ) or kinematics (Miret-Roig et al. 2022 ; Žerjal et al.
023 ), are able to use low-mass stars, which are much more abundant.
o we ver, methods that utilize intermediate-mass stars for measuring 

tellar ages have been lacking. 
Asteroseismology – the study of stellar oscillations – is highly 

ensitive to age and has long held promise as an independent method
or age determination (e.g. Aerts 2015 ). Like other techniques, 
steroseismology is model dependent, but the physics of those 
odels is generally different from the high- and low-mass stars 

Soderblom 2010 ); hence, the techniques are highly complementary 
Kerr et al. 2022a , b ). Until recently, ho we ver, asteroseismology of
ntermediate-mass stars [the so-called δ Scuti (Sct) variables] has 
een hampered by the difficulties in identifying which modes are 
 xcited. The disco v ery of re gular patterns in the pulsation mode
requencies of some δ Sct stars (Bedding et al. 2020 ) has opened
p a pathway to determine their masses, ages, and metallicities, 
 E-mail: oxs235@student.bham.ac.uk (OJS); simon.murphy@usq.edu.au 
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ithout the requirement that the star resides in a cluster or 
ssociation. 

In recent years, oscillations in large numbers of δ Sct stars have
een measured using white-light photometry from space telescopes 
uch as CoRoT (e.g. Papar ́o et al. 2013 ; Michel et al. 2017 ; Barcel ́o
orteza, Roca Cort ́es & Garc ́ıa 2018 ), Kepler (e.g. Uytterhoeven et al.
011 ; Balona, Daszy ́nska-Daszkiewicz & P amyatn ykh 2015 ; Garc ́ıa
ern ́andez et al. 2017 ; Bowman & Kurtz 2018 ; Guzik 2021 ), and
ESS (e.g. Antoci et al. 2019 ; Hasanzadeh, Safari & Ghasemi 2021 ;
arac et al. 2022 ; Chen et al. 2022 ). Observed oscillation frequencies
an be compared against grids of model frequencies to find a best-
tting set of parameters (Murphy et al. 2021 , 2022 ). It is somewhat
ore challenging to understand the resulting uncertainties, which are 

ot uniquely determined by the spacing of the model grid (Pedersen
020 ), and instead depend more strongly on the underlying physics
Steindl et al. 2021 ). Part of the challenge is that models can be
omputationally e xpensiv e and calculating ne w e volutionary tracks
n the fly for Monte Carlo sampling is prohibitive. 
In order to treat the uncertainties more robustly, we aim to convert

 discrete grid of stellar models into a continuous function. We
se a neural network to emulate a grid of stellar models that has
een pre-computed o v er the range of e xpected stellar parameters.
e combine the trained neural network with a Bayesian sampler to

ormally treat random uncertainties in the observables. This yields 
stimates for the posterior probability density of the fundamental 
roperties, which quantifies their uncertainties. It also allows us to 
nfer viable frequencies for modes that were not detected, but which

ight exist in the data at low signal-to-noise ratio. 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. The model grid used in this work, where each symbol represents an evolutionary track with a particular metallicity ( Z in ) and mass. Colour coding 
indicates the number of models along each track (left), and the minimum (middle) and maximum (right) ages for which pulsation frequencies were calculated 
(see Section 2 ). 
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In the following section, we describe the grid of stellar models on
hich the neural network is trained, and in Section 3 we discuss the
etails of the network architecture and training method. In Section 4 ,
e present the method used to perform the Bayesian inference, and

how results for a selection of simulated and real sets of observations
Section 5 ). 

 T H E  STELLAR  M O D E L  G R I D  

e used the model grid described in Murphy et al. ( 2023 ), consisting
f evolutionary tracks computed with MESA (r15140; Paxton et al.
011 , 2013 , 2015 , 2018 , 2019 ) and pulsation models calculated
ith GYRE (v6.0.1; Townsend & Teitler 2013 ). Provisional versions
f this grid have already been used to model the pulsations of
Sct stars (Kerr et al. 2022a , b ; Murphy et al. 2022 ; Currie et al.
023 ), and the physics of the models are described in Murphy et al.
 2022 ). 

A well-sampled grid was needed to train the neural network
mulator. Here, evolutionary tracks were spaced by 0.02 M � in mass
 and 0.001 in initial metallicity Z in . For Z in > 0 . 010, the spacing
as increased to 0.002. The grid is shown in mass–metallicity space

n Fig. 1 . A common problem in MESA is that pre-MS models
ometimes fail to converge and the evolution is terminated (see e.g.
teindl et al. 2021 ). In such cases, we attempted to recalculate the

rack with a slightly increased mass ( M + = 0.001) up to five times
efore abandoning that track. Abandoned tracks appear as gaps in
he grid in Fig. 1 . 

It is also important to ensure that the tracks are sampled well
n age. Computational errors are minimized by keeping the time
nterval small throughout the evolution, even if not all time-steps are
aved as outputs. The internal sampling is described in Murphy et al.
 2023 ). F or outputs, we sav ed evolutionary and pulsation models
very 0.05 Myr from 2 until 10.5 Myr, in order to adequately sample
he rapid evolutionary changes that occur on the pre-MS. After this,
he evolution is somewhat slower, and sampling of 3 Myr was deemed
dequate up to ages of 40 Myr. Beyond this, the tracks were instead
ampled according to changes in position on the HR diagram (limits
f � log T eff = 0.0006 and � log L = 0.002), with an upper limit
f 100 Myr between samples. The minimum and maximum ages
ampled for each track are shown in Fig. 1 . Where large gaps occurred
n the grid, or when the specific M –Z in combination demanded it, we
anually recalculated tracks with finer sampling. This explains the

ariations in the number of samples per track in Fig. 1 . The resulting
NRAS 525, 5235–5244 (2023) 
rid spans classical observable ranges of log L = 0.3–1.8 dex and
 eff = 6000–14 000 K. 
For each pulsation model, we computed the frequencies of radial
odes (spherical degree � = 0) having radial orders n from 1 to

1, and dipole ( � = 1) modes having n ∼ 1–10. This encompasses
he range of radial orders observed for real stars (e.g. Bedding et al.
023 ), with oscillation frequencies spanning ν = 4–150 d −1 . We
alculated the mean frequency separation between radial orders ( �ν)
sing the radial modes having n = 5–9, by fitting a straight line to the
ode frequencies as a function of n (see White et al. 2011 ), using 

= �ν( n + �/ 2 + ε) . (1) 

he variable ε is the intercept of that line with the y -axis, and
escribes the distance of the radial mode ridge from the y -axis in an

´chelle diagram. In addition to the individual mode frequencies, we
tored the values of �ν and ε for each model in the grid, since these
steroseismic quantities relate to astrophysical quantities (Murphy
t al. 2023 ). 

To reduce the effect of the strong covariance between stellar age
and mass M , and ease the training of the neural network, we used

he assumption that the MS lifetime is approximately proportional to
 

−3.2 and defined the scaled age (e.g. Davies & Miglio 2016 ) 

 = 10 −4 τ ( M/ M �) 3 . 2 . (2) 

his scaled age serves as an estimate of the fractional MS age of our
odels. 

 CONSTRUCTI NG  T H E  N E U R A L  N E T WO R K  

o o v ercome the discretely sampled nature of the model grid, we
sed a neural network consisting of a series of fully connected dense
ayers in place of standard interpolation for continuous stellar model
mulation. The network was trained on the model grid, learning to
redict observable parameters given stellar model input parameters.
his way, the network learned the map from model parameters

o observables and could be used for likelihood estimation during
nference. To this end, we used the fundamental parameters M , Z in ,
nd scaled age ( K) as inputs for parameter augmentation and network
raining. Outputs consist of the classical observables ( L and T eff ),
steroseismic quantities ( �ν and ε), and 11 radial and 10 dipole
ode frequencies. We refer to these 25 outputs collectively as the

observable parameters’. 
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Figure 2. Residual distributions of predictions from the neural network. The residuals are that of the decimal logarithms of T eff , L (blue), and mode frequencies 
( n , � ) (orange). The boxes show a central line at the median value of the distribution, with edges at the lower and upper quartiles. Whiskers extend to the 5th and 
95th percentile range. The dashed line indicates complete agreement between the network predictions and model grid values. 
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Once the input and output parameters were defined, we carried out 
ata set-wide parameter augmentation to impro v e the training of the
etwork. We converted all parameters (excluding ε) to the decimal 
ogarithm and applied a Z -score standardization to all parameters 
including ε). Both of these operations restricted all parameters to 
imilar ranges, to a v oid the neural network assigning erroneously 
igh importance to parameters spanning several orders of magnitude 
uring training. We found the combination of the two operations to 
e optimal for this investigation. 
To further simplify the training process, we adopted a process of

re-training dimensionality reduction and in-network dimensionality 
eprojection similar to that described in Mancini et al. ( 2022 ). We
erformed principal component analysis on the observable parame- 
ers in the model grid, as follows. For all models, we calculated the
ovariance matrix of all 25 observable parameters. The eigenvectors 
f the resulting covariance matrix, or ‘principal components’, were 
anked in order of descending eigenvalue, returning a list of principal 
omponents explaining the most to the least variance in the observ-
ble parameters. We determined how many principal components 
o include using the explained variance ratio, which describes the 
ercentage of the variance of the observable space present in just
he chosen principal components. We found that nine principal 
omponents explained all but 10 −4 per cent of the total variance. 
his sufficiently explained the covariance of the 25 parameters in the 

ull observable space. 
The use of principal components presents the neural network with 

 simpler map to learn – replacing the fundamental parameters by the 
educed dimensions of the ‘latent parameters’ – and also remo v es 
ovariance information from the observables, which is redundant 
or the neural network. We then added a custom non-trainable layer 
o the neural network, which projects the latent parameters back 
nto the full observable parameter space before the network outputs 
redictions. 
Finally, we split the model grid into a training and a testing set
or the neural network. The training set was randomly selected to
omprise 80 per cent of the model grid, to be seen by the network
uring training. The test set, composed of the remaining 20 per cent
f the grid, was unseen by the network during the training process and
as used solely for e v aluation of network prediction performance.
his served as a check that the network is capable of model grid

nterpolation – the training set became a sparser representation of the 
riginal model grid, with the test set providing models guaranteed to
old combinations of parameters previously unknown to the network. 
In addition to the data augmentation prior to training, the hyperpa-

ameters of a neural network can be tuned to promote faster and more
table learning. To quantify network performance for comparison 
etween different hyperparameter permutations, we compared their 
alidation loss profiles o v er multiple network training sessions. We
dopted a ‘grid search’ method for testing potential combinations of 
etwork hyperparameters. This involved creating a grid of potential 
alues for the number of fully connected dense layers (ranging from
hree to eight in steps of 1), acti v ation functions, optimizers, learning
ates, loss functions, and batch sizes. We populated a grid with
hese hyperparameters, and then tested the resulting network at each 
osition in the hyperparameter grid for successful validation loss 
inimization. 
We found the optimal network consisted of six fully connected 

ense layers of 64 neurons, each using an exponential linear unit
cti v ation function (Cle vert, Unterthiner & Hochreiter 2015 ), fol-
owed by the custom layer for projection from latent to observable
arameters, and a final dense output layer with linear acti v ation
unction. We used the ADAM optimizer (Kingma & Ba 2014 ) with
 learning rate of 10 −4 , and the mean squared error loss function.
or our training set of 1.4 × 10 5 models, a batch size of 6 × 10 4 

odels provided a good compromise between speed and training 
tability. We used a validation split of 25 per cent of the training
MNRAS 525, 5235–5244 (2023) 
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Figure 3. Stellar model grid in model parameter space, coloured according to 
mean decimal logarithm of network uncertainty on mode frequency prediction 
av eraged o v er each track. 
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et – where the test set is used to e v aluate neural network success
fter training, a ‘validation set’ is used for e v aluation of neural
etwork success during training. Once primary training was complete
ith the learning rate abo v e, we sav ed and recompiled the network
ith a slower but less volatile learning rate of 7 × 10 −5 , and

estarted training until no validation loss reduction was observed for
0 4 training epochs. The network and custom latent-to-observable
rojection layer were constructed using the TENSORFLOW sequential
PI (Abadi et al. 2015 ). 
Once the optimal network from the grid search was trained, we

 v aluated the network performance across the full observable pa-
ameter space. Using the test set previously remo v ed from the model
rid, we plotted distributions of the decimal logarithm prediction
esiduals for each parameter. This allowed us to visualize any bias and
ncertainty inherent in the neural network predictions. We used the
edian absolute deviation of these prediction residual distributions,

hown in Fig. 2 , to quantify network prediction uncertainty for ob-
ervable parameters. We found an uncertainty in network predictions
f 8 × 10 −4 dex and 2 × 10 −4 dex for log L and log T eff , respectively.
e found a mean prediction uncertainty of ∼3 × 10 −4 dex for the

ecimal logarithm of the mode frequencies averaged over the entire
est set. As shown in Fig. 3 , neural network prediction uncertainty
ncreased into the low mass, high metallicity domain. While the vast

ajority of the emulation uncertainty o v er tracks are well explained
y our adopted uniform value, we note that neural network prediction
ncertainty could be impro v ed by better populating this region of the
rid with more models for training. 

 INFER R ING  T H E  F U N DA M E N TA L  STELLAR  

A R A M E T E R S  

o perform the Bayesian inference on the input model parameters,
= { M, log Z in , log K} , for a given observed set of mode frequen-

ies, we sampled the posterior distribution 

 ( θ | D) = 

P( θ ) L ( D| θ ) 

E( D) 
. (3) 

ere, P( θ ) is the prior on the input model parameters, and L ( D| θ ) is
he likelihood of observing a set of parameters ( D ), given the model
arameters. The evidence, E( D), is calculated at each step during the
ampling. 

In addition to the input model parameters, we also included
 v ariable of fset term, � n , as input to account for the possible
NRAS 525, 5235–5244 (2023) 
mbiguity in assigning the radial orders of the observed modes.
his ambiguity arises because the radial orders of a set of modes
annot al w ays be determined from the observed mode frequencies
lone, and are typically decided by comparison to stellar models.
ncluding � n in the sampling allows us to marginalize o v er this
ncertainty when estimating the posterior distribution of the input
odel parameters. We expect this uncertainty to only lead to an error

f ±1 radial order, and so we chose the prior on � n to be a set of
-functions at �n = −1 , 0 , and 1. 

Table 1 lists a summary of the prior functions. For the priors on M ,
og Z in , and log K, we chose to use β distributions, since they can be
ounded to match the limits of the stellar model grid. In addition, the
hape parameters of the β distributions may be chosen such that the
riors reflect our expectation of the distribution of real observations
f M , Z in , and K. 
Our choice of range and shape of the prior on K is moti v ated

y the age range and distribution we expect to target, and also
e able to observe. Mode identification for δ Sct stars is currently
ossible up to approximately one third of the MS age, after which
he coupling between the buoyancy dominated and acoustic modes
poils the regular mode frequency patterns. Furthermore, at older
ges the physics of mixing and o v ershooting become more important,
nd these were not treated as variables in the model grid. Hence, the
rior on age extends to approximately one third of the expected
S lifetime. The lower limit on the prior on the scaled age was

hosen because stars in our mass range of interest (see below) do
ot evolve to cross the δ Sct instability strip until ages ≥2 Myr. Due
o the motion of stars through the δ Sct instability strip, the age
rior is biased towards lower ages, with a fall-off in the age prior
istribution towards older stars. We note that a minority of points
efined by the prior on log K do fall outside of the range of the
rid. We define a β distribution as our prior on log K with upper
nd lower limits of −3 and −0.3, respectively, whereas the model
rid has a range of −3 to −0.36. This is not of concern as this
igh region of log K is extremely underpopulated – for example,
he range −0 . 4< log K < −0 . 3 contains just 0.4 per cent of points
n the entire grid. Furthermore, the neural network is capable of
mulating points that lie outside the ranges of the training grid. In
his regime, interpolation becomes extrapolation, and predictions
re made with increased uncertainty. The prior region that lies
utside of the grid is rapidly diminished during inference, and
hus should not have bearing on the resulting model parameter
osteriors. 
The prior on Z in ranges from approximately 0.07 to 1.5 times

he solar metal mass fraction of 1.42 per cent used in the models
Asplund et al. 2009 ), which co v ers the metallicity distribution of
tars forming within approximately 1 kpc of the Sun at the current
ge of the Galaxy (Hayden et al. 2020 ). The existence of metal-poor
Sct stars in modern star-forming regions (e.g. HD 139614 in Upper
entaurus–Lupus; Murphy et al. 2021 ) suggests that slightly subsolar
etallicities are more common than slightly supersolar metallicities

n young δ Sct stars. We therefore skewed the prior probability density
owards subsolar values. 

Finally, the mass range was chosen to ensure that models exist
oth within and on either side of the instability strip (Dupret et al.
004 ; Murphy et al. 2019 ). Our slight skew towards lower masses
ccounts for the similar skew present in the stellar initial mass
unction (Krumholz 2014 ). 

Fig. 4 shows samples drawn from these prior density distributions,
oth in terms of the sampled variables and those transformed to M ,
 in , and age. These priors are applied to the inference performed for
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Table 1. Prior density functions used in equation ( 3 ). The priors on M , log Z in , and K are given by βa 
b , where a and b are the shape parameters of the 

β-distributions, and the prior on � n is a series of δ-functions at integer values. In all cases, the arguments to the distribution functions denote lower and upper 
limits. 

Parameter Prior function 

M [M �] β2 
3 (1 . 3 , 2 . 3) 

log Z in β6 
2 ( −3 . 1 , −1 . 6) 

log K β2 
1 . 2 ( −3 , −0 . 3) 

� n ∈ R { −1, 0, 1 } 

Figure 4. Left: Samples drawn from the one-dimensional prior distributions of the sampled parameters. The diagonal frames show the marginalized distributions 
(black) and the functions used to draw the samples (orange). The priors used for � n are δ-functions at �n = −1 , 0 , and 1. The off-diagonal frames show the 
two-dimensional distributions of the input parameters. Right: The samples from the left frames (black) transformed to the same units as the output from the 
stellar model grid (blue). 
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ll targets (see below). Additional priors may be applied on a target-
y-target basis if, for example, the mass can be constrained by other
ources such as orbiting companions, or limits can be placed on the
etallicity by spectroscopy. 
For each of the samples drawn from the prior distributions, the 

eural network produces the following outputs: a set of mode 
requencies, the ef fecti ve temperature, and the luminosity. Gi ven 
 set of outputs, we then e v aluated the likelihood of the observations
y 

log L ( D| θ ) = log L ( D S | θ ) + log L ( D C | θ ) . (4) 

e separate the log-likelihood into the seismic variables, D S , and 
he classical (non-seismic) variables, D C . The contribution to the 
ikelihood of the mode frequencies is given by 

log L ( D S | θ ) = 

∑ 

i 

log N 

(
νobs 

i , 
√ 

σ 2 
νobs 
i 

+ σ 2 
νNN 
i 

)
, (5) 
nd that of the classical observables is given by 

log L ( D C | θ ) = log N 

(
log L 

obs , 

√ 

σ 2 
L obs + σ 2 

L NN 

)

+ log N 

(
T 

obs 
eff , 

√ 

σ 2 
T obs + σ 2 

T NN 

)
. (6) 

he width of the probability densities used in the inference is given
y two terms that specify the observational uncertainty (superscript 
obs’), and the noise due to the precision of the neural network’s
bility to emulate the model grid (superscript ‘NN’). Based on the
pread of the residuals presented in Figs 2 and 3 , this emulation
ncertainty is approximately 4 × 10 −4 dex, which equates to a 
elative uncertainty of ≈0.1 per cent on the output parameters. This
dditional uncertainty was added in quadrature to the uncertainty of 
he observed mode frequencies. 

In the following, we will use simulated frequencies corresponding 
o those obtained from two sectors of data from the TESS mission
Ricker et al. 2015 ). We therefore adopted an uncertainty on the
MNRAS 525, 5235–5244 (2023) 
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M

Figure 5. Samples drawn from the posterior distributions of e x emplar simulated stars 5 (left) and 6 (right). For clarity, we transform the initial metallicity to 
per cent and K to stellar age τ . The model input values used to generate the simulated star data are shown in blue. 
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ode frequencies of 0.02 d −1 , which is the frequency resolution of
he resulting power spectra. The uncertainties on log L and log T eff 

epend on the target in question, but for the simulations shown below
hese were fixed to σ L = 0.05 dex and σ T = 200 K. 

The neural network residuals also showed a bias of ∼10 −5 dex,
hich equates to an offset of 0.01 per cent on each of the output
arameters. This offset is small compared to the combination of
he observed and neural network uncertainties, and so we did not
onsider it in the analysis. Ho we ver, if either of these sources of
ncertainty were decreased by, for e xample, impro ving the estimates
f the observed mode frequencies, the importance of this bias would
eed to be re-e v aluated. 

We performed the sampling using the nested sampling method
rom the DYNESTY PYTHON package (Skilling 2004 ; Speagle 2020 ).
ested sampling determines iso-likelihood contours in the input
arameter space, which were iteratively redefined until samples were
onsistently drawn around the global likelihood maximum. In the
YNESTY package, this process is terminated when the change in
odel log-evidence � log E is less than a pre-defined value chosen

ccording to the DYNESTY documentation. 1 The method presented
bo v e is not restricted to using DYNESTY , and other sampling methods
ay be used, such as MULTINEST (Buchner et al. 2014 ) or EMCEE

F oreman-Macke y et al. 2013 ). 

 RESU LTS  

.1 Simulated stars 

n order to test our methodology and validate the accuracy of the
eural network emulator, we have performed tests based on 25
imulated stars in a ‘hare-and-hounds’ e x ercise. To produce these
imulated stars, we proceeded as follows. Values of stellar mass
nd initial metallicity were selected to lie in between values in the
NRAS 525, 5235–5244 (2023) 

 ht tps://dynest y.readthedocs.io/en/st able/

p  

t  

o

rid, but still within the defined parameter range of the grid. We
alculated stellar models and pulsation frequencies using MESA and
YRE , using the same settings as for the grid. We selected ages from

he newly calculated tracks, which then defined the truth values for
ass, metallicity, and age for our simulated stars and their associated

true’ observables. We only selected a subset of the calculated modes,
o better reflect typical observations of δ Sct stars. We selected modes
t four consecutive radial orders for each degree, within the bounds
f n = 1–8. 
To simulate noisy observations, we added noise to the observable

arameters of the simulated stars. These random offsets were drawn
rom a normal distribution, with mean of zero and a standard
eviation of: 0.02 d −1 for the mode frequencies, 200 K for the
f fecti ve temperatures, and 0 . 05 dex for the log luminosity. 

.1.1 Exemplar simulated stars 

ig. 5 shows the posterior probability estimates for simulated stars
ith some of the most promising results. The posterior samples for

imulated star index 5 demonstrate our ability to quantify random
ncertainty on our inferred properties from the posterior and shows
hat the true properties of this simulated star lie comfortably with the
osterior distribution. In this case our method is performing as re-
uired but it is worth noting that, even for this e x emplar, the posterior
till contains significant correlation between the parameters. 

We see that the posterior distribution is not well described by a
eries of separable one-dimensional normal distributions. Instead,
here are strong covariances between inferred parameters, which
re to be expected from stellar evolution theory. However, the one-
imensional marginal posterior distributions show evidence of not
eing normally distributed and, in the case of the stellar age, even
omewhat multimodal. To examine the degree of accuracy and
recision of the results, we will study the summary statistics of
he posterior distribution. This does not capture all the detail that is
f value, but is none the less useful as a test of our methods. 

https://dynesty.readthedocs.io/en/stable/
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Figure 6. Difference between the inferred and model values of M , Z in , and age relative to the uncertainty of the inference, for a set of 25 simulated stars. The 
uncertainty is taken as the standard deviation of the marginalized posterior distributions of each of the parameters (see Section 5.1.2 for details). 

Figure 7. Samples drawn from the posterior distribution of simulated star 14 
are shown in red. Subsequent runs using the same truth values ( M = 1.696 M �, 
Z in = 0.0136, τ = 8.76 Myr) but different noise realizations are shown in black. 
The truth values are shown in blue (see Section 5.1.3 for details). 
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The posterior samples for simulated star index 6 show an ideal 
xample of posterior probability estimation for a simulated star. 
ach model parameter posterior distribution is unimodal, with peaks 
 M = 1 . 58 M �, Z init = 0 . 93 per cent , τ = 9 . 65 Myr) comfortably
entred on the truth values used to generate simulated star 6 
 M = 1 . 58 M �, Z init = 0 . 93 per cent , τ = 9 . 67 Myr). 

.1.2 Results for 25 simulated stars 

hile examining simulated stars individually is useful, it is hard 
o draw conclusions on the validity of our approach because we 
re looking at a single realization of noise on the observables. We
ow consider all 25 simulated stars, including the e x emplars abo v e
simulated star indices 5 and 6), to look at the statistics of our
osterior probability distributions when compared to the truth values 
f the input properties. As part of our method, we fitted a parameter
o account for our uncertainty in our assumption of the radial order
abel n . In our tests on simulated stars, we reco v ered the correct radial
rder in all cases with no meaningful uncertainty on the posterior of
he radial order labels. 
For each parameter of each star, we computed the difference 
etween the truth value and the inferred value (the mean of the
osterior samples for that parameter) divided by the uncertainty (the 
tandard deviation of the posterior samples for that parameter). If our
nference is perfect, and our posterior distributions are well behaved, 
hen this metric should be drawn from a normal distribution with zero
ean and unit v ariance. Ho we ver, multimodality, non-Gaussianity, 

nd other pathological behaviour in the posterior can bias our metrics
way from our assumed normal distribution. 

Fig. 6 shows the metric for each simulated star and each input
roperty of the star. It is clear that the majority of our simulated
tar results are consistent with the truth value given the uncertainty.
nd broadly, the numbers of metrics at the 1 and 2 sigma levels

re consistent with expectations. There are ho we ver some outliers
r results which we will discuss. The index for the most significant
utlier in terms of metallicity is 14 and an interesting behaviour in
he age distribution is observed in simulated star index 21. 

.1.3 Further tests of simulated star 14 

imulated star 14 appears as an outlier in metallicity by ∼2.5 σ . To
xamine this behaviour, we have produced 10 more realizations of 
his simulated star. That is, we have taken the same truth values as
nputs, but redrawn the simulated noise on each observable parameter 
sing the same noise distributions. 
Fig. 7 shows the posterior samples for the original and subsequent

uns for simulated star 14. Firstly, it is clear that the posterior for Z in is
ultimodal and contains significant covariance. Secondly, there is a 

ias of the posterior distributions away from the truth value in both
etallicity and age that cannot be explained simply as a result of the

ealization noise on the observables. 
We have checked for the possible origins of this bias. We examined

he prior probability distrib ution, b ut found it to be smooth and nearly
at o v er the re gion of the posterior. We hav e performed multiple
ealizations of the noise and still observed this bias and therefore
lso exclude the noise or likelihood as the source of the bias. 

A possible source of error is in the neural network emulation
roducing differences in the predicted mode frequencies. While these 
rrors are typically small, of the order of 3 × 10 −4 dex, the noise
rom the neural network is not random noise that would be expected
o reduce with more realizations of the observables. Instead, the 
rror is systematic and will produce a bias. The systematic error will
l w ays be present in emulation and this will lead to a bias, but it is
he magnitude of this bias that is interesting. For this simulated star,
he bias is similar to the reported uncertainty, which is about 1 . 5 Myr.
o we ver, this error can be reduced by extending the training time of
MNRAS 525, 5235–5244 (2023) 
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M

Figure 8. Samples drawn from the posterior distribution of simulated star 21 
are shown in red. Subsequent runs using the same truth values ( M = 1.777 M �, 
Z in = 0.0182, τ = 12.97 Myr) but different noise realizations are shown in 
black. The truth values are shown in blue (see Section 5.1.4 for details). 
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he neural network, or increasing the grid search density around the
ptimal neural network architecture. 

.1.4 Further tests of simulated star 21 

imulated star 21 shows an interesting behaviour in the age posterior.
ig. 8 shows the posteriors for the original simulated star 21 and for
0 more realizations, as we did for simulated star 14 abo v e. No
eaningful bias is observed in the posteriors for mass or metallicity,

iven the priors we apply. 
The true age of the simulated star was 12.96 Myr, which corre-

ponds to the pre-MS evolution stage. The age posterior is clearly
imodal, with solutions around 10 and 160 Myr. This behaviour is
bserved in all the realizations, lending confidence that this is not a
esult of the noise being added. In fact, this bimodality is consistent
ith our understanding of the evolution of these stars and illustrates

he difficulty of distinguishing the phase of the MS evolution where
he track crosses its pre-MS evolution in the HR diagram. 

.2 Application to HD 99506 

e applied our methods to HD 99506, which is one of the high-
requency δ Sct stars discussed by Bedding et al. ( 2020 ). We used
he following inputs: T eff = 7970 ± 250 K and L /L � = 7.58 ± 0.37
taken from table 1 of Bedding et al. 2020 ), and the mode frequencies
hat we have measured and listed in T able 2 . W e chose only the

ode frequencies that were obvious, leaving out tentatively identified
odes such as the n = 4 and n = 9 radial modes, and the n = 1 and
 = 8 dipole modes. The identified modes span two radial orders
ore than any of the simulations and so, despite the gaps at some

rders, the y pro vide tighter constraints. The resulting posteriors on
 , Z in , and age are unimodal and indicate a per cent-level random

ncertainty (Fig. 9 ). The inferred age (9.71 ± 0.31 Myr) corresponds
o the pre-MS phase, before the onset of pp-chain H-burning but
NRAS 525, 5235–5244 (2023) 
fter the temporary pre-MS carbon-nitrogen-oxygen (CNO) burning
hase. 
The calculation of well-sampled posteriors for uncertainty esti-
ates is a marked impro v ement on what is possible using discrete

rid points and χ2 minimization (e.g. Kerr et al. 2022a ), where an ar-
itrary threshold in χ2 needs to be adopted. It is especially useful that
he posteriors are marginalized, given the aforementioned correlation
n astrophysical parameters demonstrated with the simulated stars. 

The neural network is also able to generate posterior predictions for
ach mode frequency, using the posterior samples as inputs. This can
e useful for estimating the validity of uncertain mode identifications.
n Fig. 10 , we see that the leftmost (lower frequency) of two close
eaks at the n = 4 radial mode is a good match and could perhaps be
dentified. The weak peak at n = 9 would also have fitted well. Inclu-
ion of these would have resulted in tighter posteriors. On the other
and, none of the missing dipole mode frequencies, nor the n = 1 or
 radial modes, would have been good additions. If we had supplied
hose modes as input, the posteriors would have broadened markedly.

 C O N C L U S I O N S  

e have presented a method for performing Bayesian inference on
undamental stellar properties of δ Sct stars using a neural network.
his method emulates the stellar model and oscillation codes, MESA

nd GYRE , by learning from a grid of models that encompasses the
hysical properties of stars in or near the δ Sct instability strip. We
sed a nested sampling method to estimate the posterior distribution
f the fundamental stellar properties, given a set of mode frequencies
nd classical observables. The resulting posterior distribution reflects
he random observational uncertainty as well as the uncertainty
f the neural network. By providing samples from the posterior
robability density, which might be multimodal, non-Gaussian, and
trongly covariate, we formally quantified the statistical uncertainty
n the fundamental stellar properties. This impro v es our ability to
nvestigate the systematic uncertainty in the stellar models. 

We used a test set that was initially unseen by the training algorithm
o e v aluate the performance of the trained neural network. We found
hat the neural network is capable of reaching an average frequency
recision of ≈3 × 10 −4 dex, with an offset of ≈5 × 10 −5 dex. These
erformance metrics may impro v e if the network were retrained with,
or example, additional grid points or with the aim to reach a lower
arget loss. Ho we v er, the fle xibility of neural networks allows for the
xtension of the model grid to include additional variables, such as
nitial helium abundance or conv ectiv e o v ershoot, by increasing the
umber of neurons in the network architecture (see e.g. Hendriks &
erts 2019 ; Lyttle et al. 2021 ). 
We applied our method to 25 simulated stars to quantify our

ccuracy and precision in the reco v ery of our input stellar properties.
e showed the method to be capable of faithfully reproducing the

rue input parameters with the exception of simulated star 14. On
nvestigation, we found a bias in the reported metallicity and age
f this simulated star to be a result of the error in prediction by the
eural network. The bias is of the order of 1.5 Myr in age for this star,
ut was confirmed to be systematic in nature. Further impro v ements
n the accuracy of the neural network emulation would reduce the
ize of this effect. 

Finally, we have applied our method to observations of a real
Sct star, HD 99506. We found this star to be in the pre-MS stage
f evolution and report a random uncertainty of only 3 per cent in
ge. Systematic uncertainty, such as that arising from missing or
mperfect physics, has not been accounted for in this number, but
ur methods pave the way for the quantification of the systematic
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Table 2. Identified modes for HD 99506 used as inputs in the modelling. 

Frequency n � 

(d −1 ) 

33.48997 3 0 
46.46549 5 0 
53.51968 6 0 
60.60165 7 0 
67.65639 8 0 
35.99870 3 1 
50.04504 5 1 
57.18150 6 1 
64.19957 7 1 

Figure 9. The posterior distributions in M , Z in , and age for HD 99506, based 
on TESS observations. 
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smoothed by a Gaussian of width four times the frequenc y resolution. F or each 
radial mode, multiple samples are taken from the retrieved model parameter 
posteriors and predictions for each sample are plotted. 
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ncertainty in future work. Similarly, the inclusion of additional 
hysics such as rotation, and additional modes such as those of higher
egree or different azimuthal order, would be trivial extensions to this
ramework in future. 

OFTWARE  

dditional software used in this work, which have not explicitly been 
entioned abo v e, are listed below: 

(i) PYTHON (Van Rossum & Drake Jr 1995 ) 
(ii) MATPLOTLIB (Hunter 2007 ) 
(iii) NUMPY (Harris et al. 2020 ) 
(iv) SCIPY (Virtanen et al. 2020 ) 
(v) PANDAS (Reback et al. 2020 ) 
(vi) CORNER (F oreman-Macke y 2016 ) 
(vii) LIGHTKURVE (Lightkurve Collaboration 2018 ) 
(viii) ECHELLE (Hey & Ball 2020 ) 
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