31 research outputs found
β-diketonate versus β-ketoiminate:the importance of a ferrocenyl moiety on improving the anticancer potency
Herein we present a library of fully characterized beta-diketonate and beta-ketoiminate compounds that are functionalized with a ferrocenyl moiety. Their cytotoxic potential has been determined by screening against human breast adenocarcinomas (MCF-7 and MDA-MB-231), human colorectal carcinoma p53 wild type (HCT116 p53(+/+)) and normal human prostate (PNT2) cell lines. The ferrocenyl beta-diketonate compounds are more than 18 times more cytotoxic than the ferrocenyl beta-ketoiminate analogues. Against MCF-7, compounds functionalized at the meta position are up to nine times more cytotoxic than when functionalized at the para position. The ferrocenyl beta-diketonate compounds have increased selectivity towards MCF-7 and MDA-MB-231, with several complexes having selectivity index (SI) values that are more than nine times (MCF-7) and more than six times (MDA-MB-231) that of carboplatin. The stability of these compounds in dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) has been assessed by NMR spectroscopy and mass spectrometry studies, and the compounds show no oxidation of the iron center from Fe-II to Fe-III. Cytotoxicity screening was performed in both DMSO and DMF, with no significant differences observedin their potency
Influence of ligand and nuclearity on the cytotoxicity of cyclometallated C^N^C platinum(II) complexes
A series of cyclometallated mono- and di-nuclear platinum(II) complexes and the parent organic ligand, 2,6-diphenylpyridine 1 (HC^N^CH), have been synthesized and characterized. This library of compounds includes [(C^N^C)Pt(II)(L)] (L = dimethylsulfoxide (DMSO) 2 and triphenylphosphine (PPh3) 3) and [((C^N^C)Pt(II))2(L`)] (where L` = N-heterocycles (pyrazine (pyr) 4, 4,4,`-bipyridine (4,4`-bipy) 5 or diphosphine (1,4-bis(diphenylphosphino)butane (dppb) 6). Their cytotoxicity was assessed against four cancerous cell lines and one normal cell line, with results highlighting significantly increased antiproliferative activity for the dinuclear complexes (4-6), when compared to the mononucleated species (2 and 3). Complex 6 is the most promising candidate, displaying very high selectivity towards cancerous cells, with selectivity index (SI) values > 29.5 (A2780) and > 11.2 (A2780cisR), and outperforming cisplatin by > 4-fold and > 18-fold respectively
Influence of Terminal Functionality on the Crystal Packing Behaviour and Cytotoxicity of Aromatic Oligoamides
YesThe synthesis and characterization of three aromatic oligoamides, constructed from the same pyridyl carboxamide core but incorporating distinct end groups of acetyl (Ac) 1, tert-butyloxycarbonyl (Boc) 2 and amine 3 is reported. Single crystal X-ray diffraction analysis of 1-3 and a dimethylsulfoxide (DMSO) solvate of 2 (2-DMSO), has identified the presence of a range of intra- and intermolecular interactions including N-H⋯N, N-H⋯O=C and N-H⋯O=S(CH3)2 hydrogen-bonding interactions, C-H⋯π interactions and off-set, face-to-face stacking π-π interactions that support the variety of slipped stack, herringbone and cofacial crystal packing arrangements observed in 1-3. Additionally, the cytotoxicity of this series of aromatic oligoamides was assessed against two human ovarian (A2780 and A2780cisR), two human breast (MCF-7 and MDA-MB-231) cancerous cell lines and one non-malignant human epithelial cell line (PNT-2), to investigate the influence of the terminal functionality of these aromatic oligoamides on their biological activity. The chemosensitivity results highlight that modification of the terminal group from Ac to Boc in 1 and 2 leads to a 3-fold increase in antiproliferative activity against the cisplatin-sensitive ovarian carcinoma cell line, A2780. The presence of the amine termini in 3 gave the only member of the series to display activity against the cisplatin-resistance ovarian carcinoma cell line, A2780cisR. Compound 2 is the lead candidate of this series, displaying high selectivity towards A2780 cancer cells when compared to non-malignant PNT-2 cells, with a selectivity index value >4.2. Importantly, this compound is more selective towards A2780 (cf. PNT-2) than the clinical platinum drugs oxaliplatin by > 2.6-fold and carboplatin by > 1.6-fold.University of Bradford Development Fund; University of Birmingham - Birmingham Fellowship; UKRI Future Leaders Fellowship (MR/T041315/1); UKRI Future Leaders Fellowship (MR/S035486/2
Cytotoxic Hydrogen Bridged Ruthenium Quinaldamide Complexes Showing Induced Cancer Cell Death by Apoptosis
This report presents the first known p-cymene ruthenium quinaldamide complexes which are stablized by a hydrogenbridging atom, [[{(p-cym)RuIIX(N,N)}{H+ }{(N,N)XRuII(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br).
These complexes are formed by a reaction of [p-cymRu(-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H+
, which are counter-balanced by a PF6 counterion. Xray crystallographic analysis is presented for six new structures with O···O distances of 2.430(3)-2.444(17) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatin-resistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4'-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index > 1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis
Cobalt complexes modulate plasmid conjugation in <i>Escherichia coli</i> and <i style="">Klebsiella pneumoniae</i>
Antimicrobial resistance genes (ARG), such as extended-spectrum β-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum β-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.</p
Rhodium(III) dihalido complexes: The effect of ligand substitution and halido coordination on increasing cancer cell potency
This work presents the synthesis of eight new rhodium(III) dihalido complexes, [RhX2(L)(LH)] (where X = Cl or I), which incorporate two bidentate N-(3-halidophenyl)picolinamide ligands. The ligands have different binding modes in the complexes, whereby one is neutral and bound via N,N (LH) coordination, while the other is anionic and bound via N,O (L) coordination. The solid state and solution studies confirm multiple isomers are present when X = Cl; however, after a halide exchange with potassium iodide (X = I) the complexes exist exclusively as single stable trans isomers. NMR studies reveal the Rh(III) trans diiodido complexes remain stable in aqueous solution with no ligand exchange reported over 96 h. Chemosensitivity data against a range of cancer cell lines show two cytotoxic complexes, where L = N-(3-bromophenyl)picolinamide ligand. The results have been compared to the analogous Ru(III) complexes and overall highlight the Rh(III) trans diiodido complex to be ∼78× more cytotoxic than the analogous Rh(III) dichlorido complex, unlike the Ru(III) complexes which are equitoxic against all cell lines. Additionally, the Rh(III) trans diiodido complex is more selective toward cancerous cells, with selectivity index (SI) values >25-fold higher than cisplatin against colorectal carcinoma
Precious metal N-heterocyclic carbene-carbaboranyl complexes: Cytotoxic and selective compounds for the treatment of cancer
A range of precious metal complexes incorporating either benzyl or carbaboranyl functionalised tethered N-heterocyclic carbenes have been prepared and fully characterised, including single crystal X-ray crystallography for one new complex. The library has been screened for their anti-cancer potential against colorectal, ovarian, cisplatin-resistant ovarian and breast cancer cell lines and their selectivity determined by comparing the cytotoxicity towards normal cells. Overall, these complexes show significant selectivity for ovarian carcinoma, and are up to 3-fold more cytotoxic than cisplatin against cisplatin-resistant human ovarian carcinoma. Upon replacing the benzyl moiety of the NHC ligand with a carbaboranyl there is a general increase observed in the potency of the complexes, with the cytotoxicity of the ruthenium complex increasing by >16-fold against human ovarian carcinoma. Generally, the rhodium complex with the benzyl tethered NHC shows the greatest selectivity for cancer, with a selectivity index of 15, which is >2x, >9x and >6x higher than that of cisplatin, carboplatin and oxaliplatin, respectively
Differential uranyl(v) oxo-group bonding between the uranium and metal cations from groups 1, 2, 4, and 12; a high energy resolution X-ray absorption, computational, and synthetic study
The uranyl(VI) ‘Pacman’ complex [(UO₂)(py)(H₂L)] A (L = polypyrrolic Schiff-base macrocycle) is reduced by Cp₂Ti(η²-Me₃SiC[triple bond, length as m-dash]CSiMe₃) and [Cp₂TiCl]₂ to oxo-titanated uranyl(V) complexes [(py)(Cp₂OUO)(py)(H₂L)] 1 and [(ClCp₂OUO)(py)(H₂L)] 2. Combination of and synthons with A yields the first –uranyl(V) complex, [(ClCp₂ZrOUO)(py)(H₂L)] 3. Similarly, combinations of and synthons (Ae = alkaline earth) afford the mono-oxo metalated uranyl(V) complexes [(py)₂(ClMgOUO)(py)(H₂L)] 4, [(py)₂(thf)₂(ICaOUO)(py) (H₂L)] 5; the zinc complexes [(py)₂(XZnOUO)(py)(H₂L)] (X = Cl 6, I 7) are formed in a similar manner. In contrast, the direct reactions of Rb or Cs metal with A generate the first mono-rubidiated and mono-caesiated uranyl(V) complexes; monomeric [(py)₃(RbOUO)(py)(H₂L)] 8 and hexameric [(MOUO)(py)(H₂L)]₆ (M = Rb 8b or Cs 9). In these uranyl(V) complexes, the pyrrole N–H atoms show strengthened hydrogen-bonding interactions with the endo-oxos, classified computationally as moderate-strength hydrogen bonds. Computational DFT MO (density functional theory molecular orbital) and EDA (energy decomposition analysis), uranium M₄ edge HR-XANES (High Energy Resolution X-ray Absorption Near Edge Structure) and 3d4f RIXS (Resonant Inelastic X-ray Scattering) have been used (the latter two for the first time for uranyl(V) in 7 (ZnI)) to compare the covalent character in the –O and O–M bonds and show the 5f orbitals in uranyl(VI) complex A are unexpectedly more delocalised than in the uranyl(V) 7 (ZnI) complex. The –Zn bonds have a larger covalent contribution compared to the Mg–/Ca– bonds, and more covalency is found in the U– bond in 7 (ZnI), in agreement with the calculations
Antibiotic functionalised polymers reduce bacterial biofilm and bioburden in a simulated infection of the cornea
Microbial keratitis can arise from penetrating injuries to the cornea. Corneal trauma promotes bacterial attachment and biofilm growth, which decrease the effectiveness of antimicrobials against microbial keratitis. Improved therapeutic efficacy can be achieved by reducing microbial burden prior to antimicrobial therapy. This paper assesses a highly-branched poly(N-isopropyl acrylamide) with vancomycin end groups (HB-PNIPAM-van), for reducing bacterial attachment and biofilm formation. The polymer lacked antimicrobial activity against Staphylococcus aureus, but significantly inhibited biofilm formation (p = 0.0008) on plastic. Furthermore, pre-incubation of S. aureus cells with HB-PNIPAM-van reduced cell attachment by 50% and application of HB-PNIPAM-van to infected ex vivo rabbit corneas caused a 1-log reduction in bacterial recovery, compared to controls (p = 0.002). In conclusion, HB-PNIPAM-van may be a useful adjunct to antimicrobial therapy in the treatment of corneal infections
Hypoxia Sensitive Metal β-Ketoiminate Complexes Showing Induced Single Strand DNA Breaks and Cancer Cell Death by Apoptosis
A series of ruthenium and iridium complexes have been synthesised and characterised with 20 novel crystal structures discussed. The library of β-ketoiminate complexes has been shown to be active against MCF-7 (human breast carcino-ma), HT-29 (human colon carcinoma), A2780 (human ovarian carcinoma) and A2780cis (cisplatin resistant human ovarian carcinoma) cell lines, with selected complexes being more than three times as active as cisplatin against the A2780cis cell line. Complexes have also been shown to be highly active under hypoxic conditions, with the activities of some complexes increasing with a decrease in O2 concentration. The enzyme thioredoxin reductase is over-expressed in cancer cells and complexes reported herein have the advantage of inhibiting this enzyme, with IC50 values measured in the nanomolar range. The anti-cancer activity of these complexes was further investigated to determine whether activity is due to effects on cellular growth or cell survival. The complexes were found to induce significant cancer cell death by apoptosis with levels induced correlating closely with activity in chemosensitivity studies. As a possible cause of cell death, the ability of the complexes to induce damage to cellular DNA was also assessed. The complexes failed to induce double strand DNA break or DNA crosslinking but induced significant levels of single DNA strand breaks indi-cating a different mechanism of action to cisplatin