147 research outputs found

    Phylogenetic analysis of the SAP30 family of transcriptional regulators reveals functional divergence in the domain that binds the nuclear matrix

    Get PDF
    Background: Deacetylation of histones plays a fundamental role in gene silencing, and this is mediated by a corepressor complex containing Sin3 as an essential scaffold protein. In this report we examine the evolution of two proteins in this complex, the Sin3-associated proteins SAP30L and SAP30, by using an archive of protein sequences from 62 species.Results: Our analysis indicates that in tetrapods SAP30L is more similar than SAP30 to the ancestral protein, and the two copies in this group originated by gene duplication which occurred after the divergence of Actinopterygii and Sarcopterygii about 450 million years ago (Mya). The phylogenetic analysis and biochemical experiments suggest that SAP30 has diverged functionally from the ancestral SAP30L by accumulating mutations that have caused attenuation of one of the original functions, association with the nuclear matrix. This function is mediated by a nuclear matrix association sequence, which consists of a conserved motif in the C-terminus and the adjacent nucleolar localization signal (NoLS).Conclusion: These results add further insight into the evolution and function of proteins of the SAP30 family, which share many characteristic with nuclear scaffolding proteins that are intimately involved in regulation of gene expression. Furthermore, SAP30L seems essential to eukaryotic biology, as it is found in animals, plants, fungi, as well as some taxa of unicellular eukaryotes

    A novel genomic region on chromosome 11 associated with fearfulness in dogs

    Get PDF
    The complex phenotypic and genetic nature of anxieties hampers progress in unravelling their molecular etiologies. Dogs present extensive natural variation in fear and anxiety behaviour and could advance the understanding of the molecular background of behaviour due to their unique breeding history and genetic architecture. As dogs live as part of human families under constant care and monitoring, information from their behaviour and experiences are easily available. Here we have studied the genetic background of fearfulness in the Great Dane breed. Dogs were scored and categorised into cases and controls based on the results of the validated owner-completed behavioural survey. A genome-wide association study in a cohort of 124 dogs with and without socialisation as a covariate revealed a genome-wide significant locus on chromosome 11. Whole exome sequencing and whole genome sequencing revealed extensive regions of opposite homozygosity in the same locus on chromosome 11 between the cases and controls with interesting neuronal candidate genes such as MAPK9/JNK2, a known hippocampal regulator of anxiety. Further characterisation of the identified locus will pave the way for molecular understanding of fear in dogs and may provide a natural animal model for human anxieties.Peer reviewe

    SAP30L interacts with members of the Sin3A corepressor complex and targets Sin3A to the nucleolus

    Get PDF
    Histone acetylation plays a key role in the regulation of gene expression. The chromatin structure and accessibility of genes to transcription factors is regulated by enzymes that acetylate and deacetylate histones. The Sin3A corepressor complex recruits histone deacetylases and in many cases represses transcription. Here, we report that SAP30L, a close homolog of Sin3-associated protein 30 (SAP30), interacts with several components of the Sin3A corepressor complex. We show that it binds to the PAH3/HID (Paired Amphipathic Helix 3/Histone deacetylase Interacting Domain) region of mouse Sin3A with residues 120–140 in the C-terminal part of the protein. We provide evidence that SAP30L induces transcriptional repression, possibly via recruitment of Sin3A and histone deacetylases. Finally, we characterize a functional nucleolar localization signal in SAP30L and show that SAP30L and SAP30 are able to target Sin3A to the nucleolus

    A putative silencer variant in a spontaneous canine model of retinitis pigmentosa

    Get PDF
    Author summary Retinitis pigmentosa (RP) is a blinding eye disease that affects nearly two million people worldwide. Several genes and variants have been associated with the disease, but still 30-80% of the patients lack genetic diagnosis. There is currently no standard treatment for RP, and much is expected from gene therapy. A similar disease, called progressive retinal atrophy (PRA), affects many dog breeds. We performed clinical, genetic and functional analyses to find the genetic cause for PRA in Miniature Schnauzers. We discovered two forms of PRA in the breed, named type 1 and 2, and show that they are genetically distinct as they map to different chromosomes, 15 and X, respectively. Further genetic, bioinformatic and functional analyses discovered a fully penetrant recessive variant in a putative silencer region for type 1 PRA. Silencer regions are important for gene regulation and we found that two of its predicted target genes, EDN2 and COL9A2, were overexpressed in the retina of the affected dog. Defects in both EDN2 and COL9A2 have been associated with retinal degeneration. This study provides new insights to retinal biology while the genetic test guides better breeding choices. Retinitis pigmentosa (RP) is the leading cause of blindness with nearly two million people affected worldwide. Many genes have been implicated in RP, yet in 30-80% of the RP patients the genetic cause remains unknown. A similar phenotype, progressive retinal atrophy (PRA), affects many dog breeds including the Miniature Schnauzer. We performed clinical, genetic and functional experiments to identify the genetic cause of PRA in the breed. The age of onset and pattern of disease progression suggested that at least two forms of PRA, types 1 and 2 respectively, affect the breed, which was confirmed by genome-wide association study that implicated two distinct genomic loci in chromosomes 15 and X, respectively. Whole-genome sequencing revealed a fully segregating recessive regulatory variant in type 1 PRA. The associated variant has a very recent origin based on haplotype analysis and lies within a regulatory site with the predicted binding site of HAND1::TCF3 transcription factor complex. Luciferase assays suggested that mutated regulatory sequence increases expression. Case-control retinal expression comparison of six best HAND1::TCF3 target genes were analyzed with quantitative reverse-transcriptase PCR assay and indicated overexpression of EDN2 and COL9A2 in the affected retina. Defects in both EDN2 and COL9A2 have been previously associated with retinal degeneration. In summary, our study describes two genetically different forms of PRA and identifies a fully penetrant variant in type 1 form with a possible regulatory effect. This would be among the first reports of a regulatory variant in retinal degeneration in any species, and establishes a new spontaneous dog model to improve our understanding of retinal biology and gene regulation while the affected breed will benefit from a reliable genetic testing.Peer reviewe

    GC-1 mRHBDD1 knockdown spermatogonia cells lose their spermatogenic capacity in mouse seminiferous tubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis is important for regulating spermatogenesis. The protein mRHBDD1 (mouse homolog of human RHBDD1)/rRHBDD1 (rat homolog of human RHBDD1) is highly expressed in the testis and is involved in apoptosis of spermatogonia. GC-1, a spermatogonia cell line, has the capacity to differentiate into spermatids within the seminiferous tubules. We constructed mRHBDD1 knockdown GC-1 cells and evaluated their capacity to differentiate into spermatids in mouse seminiferous tubules.</p> <p>Results</p> <p>Stable mRHBDD1 knockdown GC-1 cells were sensitive to apoptotic stimuli, PS341 and UV irradiation. <it>In vitro</it>, they survived and proliferated normally. However, they lost the ability to survive and differentiate in mouse seminiferous tubules.</p> <p>Conclusion</p> <p>Our findings suggest that mRHBDD1 may be associated with mammalian spermatogenesis.</p

    Novel mutation in the NHLRC1 gene in a Malian family with a severe phenotype of Lafora disease

    Get PDF
    We studied a Malian family with parental consanguinity and two of eight siblings affected with late-childhood-onset progressive myoclonus epilepsy and cognitive decline, consistent with the diagnosis of Lafora disease. Genetic analysis showed a novel homozygous single-nucleotide variant in the NHLRC1 gene, c.560A>C, producing the missense change H187P. The changed amino acid is highly conserved, and the mutation impairs malin's ability to degrade laforin in vitro. Pathological evaluation showed manifestations of Lafora disease in the entire brain, with particularly severe involvement of the pallidum, thalamus, and cerebellum. Our findings document Lafora disease with severe manifestations in the West African population

    Exosome-Related Multi-Pass Transmembrane Protein TSAP6 Is a Target of Rhomboid Protease RHBDD1-Induced Proteolysis

    Get PDF
    We have previously reported that rhomboid domain containing 1 (RHBDD1), a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6) as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6

    HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition

    Get PDF
    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de

    Elevated Expression of Stromal Palladin Predicts Poor Clinical Outcome in Renal Cell Carcinoma

    Get PDF
    The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study
    corecore