30 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Chemical, isotopic and microbial characterization of dissolved and particulate organic matter in estuarine, coastal and open ocean systems

    No full text
    Dissolved and suspended particulate organic carbon (DOC, POC), nitrogen (DON, PON), phosphorus (DOP, POP) and inorganic nutrient distributions and elemental ratios were measured and evaluated for the Atlantic, Southern, and Pacific Oceans. Results indicate that DOC is remineralized during mean deep-water transport from the North Atlantic to the North Pacific. Elemental ratios for both dissolved organic matter (DOM) and particulate organic matter (POM) indicate that organic N is preferentially remineralized compared with organic C, while organic P is preferentialy remineralized relative to both organic C and N. Comparison between the DOM and POM pools further suggests that surface POM may be less refractory than concurrently sampled DOM. Major compound class compositions of ultrafiltered DOM (UDOM) in the North Atlantic, North Pacific and Chesapeake Bay indicate that the majority of UDOM was comprised mainly of a molecularly-uncharacterized fraction, followed by carbohydrates, proteins and lipids. Delta14C and delta 13C results of UDOM compound classes suggest that UDOM in Bay mouth and surface open ocean waters were similarly dominated by old, marine sources, while UDOM from the freshwater endmember was influenced by much younger terrestrial sources. Results indicate that DOM is comprised of different aged organic fractions and provide evidence for a potential organic size -age continuum; from low-molecular weight DOM (oldest) to UDOM (intermediate age) to POM (youngest). Lipid biomarker results indicate that North Atlantic and Pacific UDOM and POM were relatively more reactive at the surface compared with greater depths, coinciding with elemental C:P and N:P ratios greater than Redfield. Factor analyses suggest that there exists a lability continuum spanning from surface ocean POM to riverine and deep ocean UDOM. Terrigenous organic material was found at all Bay sites although autochthonous sources of organic matter were also important. Dark microbial incubations of DOM from the Pacific Subtropical Front and South Atlantic Bight indicate that open ocean DOM is relatively refractory over short time scales (less than 2 months). Experiments with plankton leachate DOM show that this sub-pool of DOM is relatively labile and is converted to refractory DOM within days. DOP is preferentially remineralized in all experiments compared with DOC or DON

    Impacts of Altered Hydrology on the Sources of Particulate Organic Carbon on the Diet of Crassostrea Virginica in the Northern Everglades, Florida, Usa

    No full text
    WOS:000419555700020Stable isotope composition of the eastern oyster Crassostrea virginica was characterized from three estuaries in the Ten Thousand Islands (Florida). Freshwater inflow from watershed management is affecting this region and has deeply modified the salinity gradient. Stable carbon and nitrogen isotopes were used to trace specific sources of organic matter and the influence of these sources of carbon on the diet of the eastern oyster in the Greater Everglades. Oysters, as well as particulate organic matter (POM) and benthic microalgae (BMA) were sampled in three bays at three different stations from upstream to downstream during both wet and dry seasons. Significant salinity differences were observed in all estuaries between summer (wet) and winter (dry) seasons and were linked to freshwater inputs into the bays. Temperature followed a typical seasonal trend. Oysters were enriched in delta N-15 compared with POM and BMA, and similarly or slightly enriched in delta C-13 for both seasons. Lighter delta C-13 values in the upper stations in the estuaries suggest input of organic matter from terrestrial sources. Stable isotopes showed that oysters fed more on POM than on BMA. Condition index of oysters varied between stations and seasons in the three estuaries. Because the quality of organic matter consumed by oysters ultimately impacts the health of the oyster, changes in water quality and quantity of freshwater entering estuaries will have implications for future management of the habitat for this ecologically and economically important species

    Application of Flow Cytometry to Assess Deepwater Horizon Oil Toxicity on the Eastern Oyster Crassostrea virginica Spermatozoa

    No full text
    International audienceThe Deepwater Horizon (DWH) oil spill in 2010 resulted in the release of millions of liters of oil into the Gulf of Mexico. Dispersants such as Corexit 9500A were used to disperse oil both at the well-head and at the surface. Polycyclic aromatic hydrocarbons and dispersants have been shown to deleteriously affect early life stages of organisms including oysters. This study examined the impacts of chemically enhanced water-accommodated fractions [CEWAF; 1.29–26.14 µg/l tPAH50 (a sum of 50 different polycyclic aromatic hydrocarbons)], high-energy water-accommodated fractions (HEWAF; 16.53–248.89 µg/l tPAH50), and dispersants (0.625–10 mg/l) on the cellular functions (viability, mitochondrial membrane potential (MMP), reactive oxygen species production (ROS), and acrosomal integrity) and resulting fertilization success of eastern oyster Crassostrea virginica spermatozoa. While viability of spermatozoa was not affected by CEWAF and HEWAF at concentrations tested, dispersant exposure caused significant decrease in viability at the highest concentration tested. Fertilization success as well as MMP and ROS production were significantly decreased upon exposure to CEWAF, HEWAF, and dispersants. Also, although not affected by HEWAF exposure, acrosomal integrity decreased upon exposure to CEWAF and dispersants at concentrations tested. The results of this study suggest that impaired fertilization and reduced viability observed after exposure to DWH oil spill contaminants may result, at least partially, from alterations of cellular functions of spermatozoa and contribute to negative effects on oyster populations, and thus the ecology and economy of the Gulf of Mexico

    Preservation of Undergraduate Research Through the Creation of Senior Research Classes at Florida Gulf Coast University

    No full text
    Undergraduate research is a defining characteristic of Florida Gulf Coast University. Maintaining an undergraduate research requirement has become increasingly difficult, as the university has grown rapidly. Departments of Biological Sciences as well as Marine and Ecological Sciences have developed senior research classes recently to meet student demands. Initial successes can be traced to courses, such as Scientific Process, which introduces research in incremental steps. We hope that the creation of senior research classes will allow us to maintain our tradition of mentor/“mentee” relationships for the most motivated students while providing all students with a quality undergraduate research experience
    corecore