72 research outputs found

    Role of Jasmonic Acid Pathway in Tomato Plant-Pseudomonas syringae Interaction

    Get PDF
    The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae

    Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    Get PDF
    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.This work was supported by grants from “Programa de formació del personal investigador” of the Universitat Jaume I (PREDOC/2009/24), the Spanish Ministry of Science and Innovation AGL2010-22300-C03-01-02 and AGL2013-49023-C03-01-02-R co-funded by the European Regional Development Fund (ERDF)

    Advances in endophytic fungi research: a data analysis of 25 years of achievements and challenges

    Get PDF
    Research on fungal endophytes has demonstrated the ability to improve crop performance and protect host plants against diverse biotic and abiotic stresses. Yet, despite the exponential growth of this topic, a whole outline to reflect the relevance and extent of each study type is missing. Hence, we performed an analysis of all available literature to expose the characteristics and limitations of this research field. Our results suggested that, overall, there is still a tendency to study the most known models in plant-fungal-stress combinations (ascomycetous fungi, grasses, abiotic stress). Fungal endophytes in dicot plants or against biotic stress, though promising, are still quite unexplored. All these data could lead future studies to assess less considered study factors that might help discern the beneficial effects of fungal endophytes with more extent and accuracy

    NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation

    Get PDF
    NH4 + nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 + nutrition (N-NH4 +)-induced resistance (NH4 +-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 + plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 + toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 + plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 +-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 +-IR. The metabolic profile revealed that infected N-NH4 + plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 + nutrition) and resistance to subsequent Pst infection.This work was supported by grants from the Spanish Ministry of Science and Innovation (AGL2013-49023-C3-2-R). The authors are grateful to the Serveis Centrals d’Instrumentació Científica (SCIC) from Universitat Jaume I (UJI, Castellón, Spain)

    Responsabilidad ambiental y futuro agrícola en las comarcas de Castellón

    Get PDF
    Material addicional de la ponència presentada al I Congrés Obert i Virtual Castelló 2020. Castelló de la Plana, 201

    Effect of early development on semen parameters and lifespan of rabbit males selected by high growth rate

    Full text link
    [EN] Life history theory suggests that different body development dynamics may influence survival and future reproductive performance of organisms. The present work studied how these dynamics could influence seminal traits and lifespan of rabbit males selected for growth rate and intended for Al. To achieve this goal, a total of 550 rabbit males were controlled from birth, evaluated both during the testing phase (four consecutive weeks after reaching 147 days of life) and the productive phase (377 of them from the end of the testing phase until 2 years of life). In order to obtain individuals with different body development dynamics, we pre-selected males based on their live weight (LW) at 0, 28, 63 and 147 days and on their average daily gain (ADG) between each period (0-28, 28-63 and 63-147 days). Libido and main seminal traits (semen volume, motility, concentration, and production, as well as normal apical ridge and abnormalities of spermatozoa) were controlled during the testing phase. Semen volume, motility and concentration were subsequently controlled during the productive phase, as well as the length of the male life, calculated as the number of days a rabbit was present at the farm between age 147 and day of death, culling or censoring; set to 2 years of life). The birth weight, the ADG between 0 and 28 days and between 28 and 63 days were positively related to some seminal parameters measured during the testing phase (semen volume, concentration, production and motility; P<0.05), while the ADG between 63 and 147 days was negatively related to the seminal productivity throughout the productive life of the males (an increment of 10 g per day on ADG reduced the number of profitable ejaculates by 4.9%; P<0.05). In addition, a higher growth between 0 and 28 and between 63 and 147 days increased the risk of death or culling of males during the productive phase (P < 0.05). In conclusion, an adequate body development early in life seems to have a positive effect on the degree of sexual maturity with which male rabbits begin their reproductive life, but reaching the reproduction onset with excessive weight can reduce their reproductive performance and lifespan. (C) 2019 Elsevier Inc. All rights reserved.The authors would like to thank Jose Manuel Arias, owner of the selection centre El Adil Redondo S.L., (Carrizo de la Ribera, Leon, Spain), and his team for their help, as without their collaboration this work could not have been carried out. This study was supported by the Interministerial Commission for Science and Technology (CICYT) of the Spanish Government (AGL2017-85162-C2-1-R).Martinez-Paredes, E.; Llorens, J.; Ródenas Martínez, L.; Savietto, D.; Pascual Amorós, JJ. (2019). Effect of early development on semen parameters and lifespan of rabbit males selected by high growth rate. Theriogenology. 139:72-80. https://doi.org/10.1016/j.theriogenology.2019.07.014S728013

    Effect of different substrates for organic agriculture in seedling development of traditional species of Solanaceae

    Get PDF
    Sowing of seedlings is one of the most critical processes on the establishment of a crop, since the future development of the plant depends largely on its health when is planted on the field. Moreover, organic agriculture has to deal with the low application of fertilizers and pesticides, which hinder the growth of seedlings. In this work, we studied the big influence of different mixtures of substrates suitable for organic agriculture based on peat, coconut husk and vermicompost in traditional varieties of tomato, pepper and eggplant. Our results indicate that the use of coconut husk based substrates in organic agriculture can reduce the growth of seedlings between 20 and 30% compared with peat-based substrates. Moreover, the plants growth in this substrate showed lower levels of chlorophyll and lower weight, but the results are strongly dependent on the species tested. Comparison between traditional plants demonstrates that traditional varieties are strongly influenced by the substrate, whereas the growth of a commercial variety of tomato barely differs when different substrates are used. The election of the substrate in organic agriculture is critical to the correct development of the plant, especially when traditional plant varieties are used.This work was carried under the collaboration agreement for training of students between the Universitat Jaume I and El3ments Sun, Water & Land Project

    1-Methyltryptophan Treatment Increases Defense-Related Proteins in the Apoplast of Tomato Plants

    Get PDF
    The activation of induced resistance in plants may enhance the production of defensive proteins to avoid the invasion of pathogens. In this way, the composition of the apoplastic fluid could represent an important layer of defense that plants can modify to avoid the attack. In this study, we performed a proteomic study of the apoplastic fluid from plants treated with the resistance inducer 1-methyltryptophan (1-MT) as well as infected with Pseudomonas syringae pv. tomato (Pst). Our results showed that both the inoculation with Pst and the application of the inducer provoke changes in the proteomic composition in the apoplast enhancing the accumulation of proteins involved in plant defense. Finally, one of the identified proteins that are overaccumulated upon the treatment have been expressed in Escherichia coli and purified in order to test their antimicrobial effect. The result showed that the tested protein is able to reduce the growth of Pst in vitro. Taken together, in this work, we described the proteomic changes in the apoplast induced by the treatment and by the inoculation, as well as demonstrated that the proteins identified have a role in the plant protection
    corecore