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Plant-Microorganism interactions

Advances in endophytic fungi research: a data analysis of 25 years of achievements
and challenges
Luisa Liu-Xu , Begonya Vicedo , Pilar García-Agustín and Eugenio Llorens

Biochemistry and Biotechnology Group, Department of Agricultural and Environmental Sciences, Jaume I University, Castellón, Spain

ABSTRACT
Research on fungal endophytes has demonstrated the ability to improve crop performance and
protect host plants against diverse biotic and abiotic stresses. Yet, despite the exponential growth
of this topic, a whole outline to reflect the relevance and extent of each study type is missing.
Hence, we performed an analysis of all available literature to expose the characteristics and
limitations of this research field. Our results suggested that, overall, there is still a tendency to
study the most known models in plant-fungal-stress combinations (ascomycetous fungi, grasses,
abiotic stress). Fungal endophytes in dicot plants or against biotic stress, though promising, are
still quite unexplored. All these data could lead future studies to assess less considered study
factors that might help discern the beneficial effects of fungal endophytes with more extent and
accuracy.
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1. Introduction

Current studies about global food and agriculture revealed
that world production may need to be increased by 60%–
110% before 2050 to avoid food shortage. However, yields
are no longer improving on 24–39% of most important crop-
land areas (Schmidhuber and Tubiello 2007; Edgerton 2009).
Along with the demand for increased production, we need to
preserve the environment and promote biodiversity in agro-
nomic ecosystems, mainly by reducing the use of pesticides
and making better use of agricultural inputs and resources:
land, water, fertilizers and energy. In this context, the use
of beneficial microorganisms to improve crop performance
and reduce the need for chemical inputs has become a realis-
tic alternative that is gaining interest among researchers and
the industry (Lugtenberg et al. 2016; Singh and Trivedi 2017;
Llorens et al. 2019).

Microorganisms are widely reported to be naturally
associated with plants. Despite the fact that the presence of
living microorganisms inside plants has been known since
the beginning of the last century, its attention only increased
in the last decades with the discovery of their ecological sig-
nificance and their ability to produce metabolites that could
modulate the physiology of the host plant or be of pharma-
cological interest (Mattoo and Nonzom 2021). Given these
circumstances, the term ‘plant microbiome’ (Hardoim et al.
2015) is on the rise, and the living microorganisms that are
in association with plants are investigated with rising
intensity.

In this way, one of the emerging areas of study is around
fungal endophytes. Plant-associated fungi are typically
classified as either pathogenic, saprotrophic, epiphytic, mycor-
rhizal or endophytic (Porras-Alfaro and Bayman 2011). Yet,
most, if not all, plants have symbiotic fungi, either epiphytic,
endophytic or mycorrhizal (Rodriguez et al. 2009).

With the evolution of research regarding endophytic
microorganisms, fungal endophytes have held several
definitions (Schulz and Boyle 2005; Hyde and Soytong
2008). In this case, the most accepted consideration estab-
lishes endophytic fungi as those fungi that reside entirely
within plant tissues, without causing apparent symptoms
of disease (Tan and Zou 2001; Rodriguez et al. 2009).
These endophytes also differ from mycorrhizae in that
there’s no localized and specialized hyphae or synchronized
plant-fungus development (Brundrett 2006).

Despite the broad diversity of the group, fungal endo-
phytes have been conventionally divided into two categories,
clavicipitaceous and non-clavicipitaceous, and four classes
(Rodriguez et al. 2009) based on their symbiotic and ecologi-
cal patterns. Clavicitipaceous endophytes, also called class 1
endophytes, belong to Clavicipitaceae (Hypocreales; Asco-
mycota) and are restricted to a narrow range of hosts, but
they can colonize the whole plant and transmit vertically
and horizontally. On the contrary, non-clavicipitaceous
endophytes, which comprise Class 2, Class 3, and Class 4,
are characterized by colonizing a broad range of hosts,
which include both monocot and dicot plants. Class 2 is
formed by ascomycetes or basidiomycetes fungi and can be
found in any part of the plant and transmitted both vertically
and horizontally. Opposed to Class 2, endophytes in Class 3
and Class 4 are restricted to shoots or roots, respectively.
Class 3 includes a diverse group of fungi that is transmitted
horizontally, whereas Class 4 includes a specific group of
sterile fungi also known as dark septate endophytes, which
manifest melanized septa (Rodriguez et al. 2009).

In addition, the diversity of microbial symbionts varies on
a host plant and environmental conditions including biogeo-
graphy, as seen in Kivlin et al. (2017). Yet, endophyte diver-
sity is not the only complex aspect of endophytes, since the
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relation between the host plant and its fungal endophytes is
also intricate (Saikkonen et al. 1998). Although their inter-
action commonly provides nutrients and stress or compe-
tition tolerance to a degree, Schulz and Boyle (2005)
hypothesized that there is a continuum of antagonistic inter-
actions and no neutral interactions, and each relationship
differs from another. Thus, understanding the nature and
particularities of the interactions between endophytes and
host plants and how they affect the host could be key to
improving agricultural management.

Recent studies have shown that the microbiome has an
impact on different aspects of the host plant, such as
improving tolerance to drought, heat, or saline stress, redu-
cing susceptibility to diseases, and increasing vigor (Weiß
et al. 2016; Llorens et al. 2019). For instance, species that
improve the growth of certain types of grass (Panicum vir-
gatum or rod grass) for the production of biofuels or
species that protect maize from fungal pathogens have
been reported. Moreover, it has also been described that
certain species from wild herbs, when transferred to
wheat and tomato, are capable of improving the growth
of these plants under conditions of heat and salinity stress
(Redman et al. 1986; Rodriguez et al. 2008). The mechan-
isms by which the endophytic microorganisms improve
the performance and the resistance of the plants could be
divided into direct and indirect mechanisms. The direct
mechanisms include compounds that are directly secreted
by the endophyte that have a straightforward effect. These
mechanisms comprise secretion of antibiotics, lytic
enzymes, phytohormones, indolic compounds or direct
competition of the niche. On the other hand, indirect
mechanisms include plant responses induced by the pres-
ence of the endophyte. These mechanisms include the
stimulation of Induced systemic resistance (ISR) and Sys-
temic acquired resistance (SAR) or the stimulation of
plant secondary metabolites (Fadiji and Babalola 2020).

The ability and feasibility of improving plant perform-
ance and resistance to different stressors using fungal endo-
phytes have fomented the interest in this research area.
However, the possibilities of research on different fungi,
hosts, stressors, and many other variables give almost end-
less combinations that can lead to the underestimation of
some areas. The rising attention given to microbial symbio-
sis in the scientific community is reflected in the high num-
ber of publications regarding this topic, including several
reviews (Tan and Zou 2001; Gautam and Avasthi 2019;
Pozo et al. 2021) and some meta-analysis (Mayerhofer
et al. 2013; Dastogeer 2018). Yet, many are focused on a
specific aspect of symbiosis, such as induction of resistance
or production of metabolites, and some don’t focus on the
fungal endophytes.

Now, we have at our disposal the data of many types of
study about endophytic fungi, but what is the magnitude
of each one? What is the relevance of one type of endophyte
compared to others? In order to know to what extent a study
category is relevant, we would need a clear description of the
whole research field. We hereby introduce a precise
interpretation of the data observed in fungal endophytes’
studies to demonstrate the state and tendency of the field
by analyzing published literature. In this work, the objective
was to contrast the main study aspects and find some minor
categories of research that are usually overlooked. The fol-
lowing questions were addressed:

−What is the diversity of the studied fungal endophytes and
their host plants?

− Which are the potential endophyte effects that are
addressed in the studies? Were the results positive?

−What aspects of fungal endophytes are extensively investi-
gated and what ones are scarcely studied?

2. Methodology

2.1. Study design

We conducted a systematic analysis of literature published
about the effect of fungal endophytes in plants. The structure
of the analysis process was performed following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines.

2.2. Literature search

2.2.1. Eligibility criteria and search methodology
To obtain the metadata that would allow analyzing the cur-
rent status of fungal endophyte studies we performed a lit-
erature search on the Scopus database in 2021, including
all the articles published up to December 2021.

The following terminology was used for the search:

- Endophyte
- Plant OR grass: This term was included to avoid research

with no inoculation in plants.
- Fungi: Fungus, fungal, and variations were included.
- Stress OR tolerance: To find the purpose of the endophytes
- NOT mycorrhiza: Excluded mycorrhizal fungi to find strict

endophytic fungus.

The terminology was looked for in title-abstracts and key-
words of articles.

A second search was conducted afterward for growth-
promoting endophytes. This time, the keyword for ‘stress
or tolerance’ was changed to ‘growth.’

Other non-vital roles like phytoremediation, fruiting
characteristics and such can be of great interest for specific
host plants or environment but are not as globally significant
as the main roles previously discussed, hence their absence in
our literature search.

2.2.2. Study selection and criteria for inclusion
Results from both search queries were merged, and then
examined to ensure the relevance of the publications for
our topic concerns. In order to achieve equality of the results,
references with the following conditions were removed:

(a) studying endophyte presence and identity without
further application,

(b) focusing on the cattle industry,
(c) aiming to particularly identify the mechanism of the

host-endophyte relation,

(d) not fulfilling the search requirements due to other
unspecific reasons, and

(e) not having its original source available or verifiable.

From the selected manuscripts, the information provided
about the fungal endophytes, the host plants, the type of
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stress studied, and the results were included in the final
analysis. In addition, highly similar articles such as in same
authors, endophyte and host, were only counted once,
including all the results from them.

2.2.3. Data collection
Subsequently, the references were exported to an MS Excel
spreadsheet for further analysis. To compare selected articles,
the data was broken down into different sets:

(1) The fungal endophytes’ species, or at least their genus.
DSE, unidentified fungi, or the use of all microbiome
of a plant was recorded as such if appropriate.

(2) Original host plants’ species, from which the endophytes
were isolated. Their condition as wild or cultivated
plants was distinguished, and endophytes that were
not isolated in the current study had this section unfilled
to avoid duplicates.

(3) Study host plants’ species, whether the endophyte is
inoculated in the same host plant from which it was iso-
lated, or a new host. Their condition as wild or cultivated
plants was noted.

(4) Method used to produce endophyte-free plants, if perti-
nent. This section does not account for surface steriliza-
tion, since it’s a widespread procedure that occurs in
most, if not all, studies.

(5) Tested effects of the endophytes.
(6) Experimental results, whether the endophytes conferred

clearly beneficial effects, had some varying impact, or
had no significant or negative effects on the host plant.

When several species were used, they were all registered.
Taxonomic synonymy was avoided by assigning only the
current taxonomic name, as consulted in the NCBI database
at the moment of the analysis.

Furthermore, to simplify results, we recorded some data
into groups:

(1) Fungal endophytes’ division. Ascomycota, Basidiomy-
cota, and Mucoromycota. When fungi of different
phyla were reported in the same article, it was con-
sidered that the article worked with various phyla.

(2) Original host plants’ family.
(3) Study plants’ family.
(4) Function group of the endophyte. The potential effects

were classified into one of these categories: abiotic stress
tolerance, biotic stress tolerance, growth promotion,
other effects, or several of them. When growth pro-
motion was assessed under stress conditions, only the
stress tolerance effect was considered.

2.3. Study quality and risk of bias

This meta-analysis aims to perform a qualitative analysis of
the currently available literature. In this way, it is necessary
to consider that, due to the diversity and complexity of the
analyzed studies, comparing experiments with different
study parameters is not always feasible. Therefore, for the
purpose of this work, the simplest and clearest variables
have been compared.

It is also important to address the issue of independence
of the analyzed studies since the search results include papers

that are part of the same study or research group and only
differ on either study parameters or research progression.
To avoid inaccuracy caused by counting dependent items
as independent ones, a set of papers from the same study
or research group was considered as a single independent
item with several study parameters.

We are aware of the possible bias committed by consider-
ing only those articles that use the word ‘endophyte’ in the
title, keywords, or abstract, excluding some potential useful
reports. Yet, opposite bias could also happen, since there
might be articles that elaborate on endophytic organisms
only in the main text, hence remaining out of the current
research and analysis. All this said, the only way to correct
such bias would be reading all articles with the word ‘endo-
phyte’ in the main text and selecting those that meet the
other criteria for inclusion, which effort we considered as
unmanageable for the purpose of this work.

3. Results and discussion

Beneficial microorganisms play an important role in plant
performance and adaptation to adverse conditions. Among
them, the interest in fungal endophytes has raised in the
last decades due to their ability to produce secondary metab-
olites that could protect the host plant against herbivory
(Bultman and Bell 2003; Shiba and Sugawara 2005). More
recently, it also has been observed that fungal endophytes
could play other roles related to plant protection against
stress conditions (Waller et al. 2005; Hossain et al. 2017),
increasing the interest of the researchers in this emerging
area.

In order to confirm and analyze the state of fungal endo-
phytes’ studies, we performed two literature searches that
retrieved around 1138 online references for the first one,
covering stress tolerance, and 418 for the second one,
focused on growth promotion. After the pertinent
reductions described in the methodology section of this
paper, we elaborated a database with a sum of 392 papers,
containing scientific publications that range from the year
1988 to December 2021.

The preliminary analysis of the gathered literature proves
the rising tendency of this research area, as observed in the
graphic slope of Figure 1. This figure shows how this study
field has been increasing steadily since 2006, and how the
number of publications on this topic in the last 5 years is
higher than the number of publications before 2017. How-
ever, it has been also observed that, in the last year analyzed,
the number of publications that fulfill our search criteria has
been slightly lower. On the other hand, an enhancement of
articles with related topics as the study of plant microbiomes
has increased. Thus, this makes clear the outstanding per-
formance of fungal endophytes as a research field and the
ongoing attention given to these microorganisms by the
research community.

The literature we examined usually had a common way of
working, with experiments arranged following next steps:
isolation of endophytes from a host of interest or acquisition
from a provider, selection of most relevant endophyte or few
endophytes, inoculation in the plant, and evaluation of its
effects in growth promotion or against some kind of stress.
In the following sections, we show our analysis of the rel-
evant aspects and other details of interest of the reviewed
papers.
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3.1. Fungal endophytes and their diversity

Studies usually state the fungal strain used in their exper-
iments, either specified by the provider or obtained by iden-
tifying the isolates of a host plant. Yet, 21% of the literature
did not completely identify the endophyte, leaving the deter-
mination at the genus level or potential candidates. This
might be caused by several reasons: not finding total coinci-
dence with any species on fungal databases, focusing on the
role of the endophyte rather than its identity, etc.

Tested endophytes are categorized at the division level in
Figure 2, and genera frequency is shown in Figure 3(a). Also,
though it was outside the scope of the study, root endophytes
seemed to be more commonly studied, followed by leaf and
stem endophytes. Our analysis showed that the vast majority

of the studies are focused on Ascomycota, which turned out
to be almost 80% of the database results, while Basidiomy-
cota covered around 12%, and Mucoromycota barely
added up to another 1% of the results.

Ascomycota’s prevalence is not surprising, since ascomy-
cetes fungi are the commonest in nature. In this category, we
can find genera such as Epichloë, Penicillium, Trichoderma,
Fusarium, Aspergillus, and Alternaria.

The relevancy of Epichloë, also known as Neotyphodium
or Acremonium in past literature for its asexual morphs,
goes back to 1988 when it was discovered. It is considered
the first reported endophytic fungi, and it is beyond question
the most known fungal endophyte genus since it extensively
colonizes widespread forage grasses, such as Lolium spp.

Figure 1. Number and accumulative number of published articles identified in the present literature research until 2021. Right-side axis belong to graphic line;
Left-side axis belong to graphic area.

Figure 2. Fungal endophyte phyla recurrence in literature research.

JOURNAL OF PLANT INTERACTIONS 247



(Schardl et al. 2004). As seen in reviewed articles, studies
about Epichloë are usually focused on plants as forage or
turf, and there are no studies about inoculation of this
Class 1 endophyte in non-host plants due to its limited
host range. West et al. (1988) observed that endophyte-
infected Lolium arundinaceum gained tolerance to drought
and nematode infection and Elmi and Robbins (2000) and
other posterior works confirmed those premises relating
both stresses. Lolium perenne as endophyte host has there-
fore been studied to demonstrate, for instance, tolerance to
drought and nitrogen deficit (Ravel et al. 1997), to heavy
metals like zinc (Monnet et al. 2001) or predators like rice
leaf bug (Shiba and Sugawara 2005).

Another recurrent genus of Ascomycota endophytes is
Penicillium for the ability to improve growth and abiotic
stress resistance, with species like P. janthinellum (Khan
et al. 2014) or P. funiculosum (Khan et al. 2011). Likewise,
Fusarium is not only studied for abiotic resistance ability
but to confer biotic resistance, with special regard to patho-
genic F. oxysporum strains (Ting et al. 2008; Nefzi et al.
2019).

Some of the articles refer to the use of dark septate endo-
phytes (DSE). This definition was used for the first time by
Read and Haselwandter (1981) to describe a diverse group
of ascomycetous endophytes with melanin hyphae that live
in roots without causing any visible symptoms. Sub-
sequently, numerous researchers have used this informal
term without further classification. Even so, few articles
describe the use of DSE and identify the fungi as Alternaria
sp. or Penicillium sp.

In contrast to the diversity of ascomycetous endophytes
exposed in the publications, basidiomycetes, and mucoro-
mycetes have been less studied according to our literature
database. One exception to this is the basidiomycete Seren-
dipita indica, previously known as Piriformospora
indica. S. indica was firstly reported in 1998 (Verma et al.
1998), discovered in desert soil from India, and found to
be similar to arbuscular mycorrhizal fungi (AMF), yet, as
opposed to them, it was able to grow in axenic culture
(Varma et al. 2001). And, unlike Epichloë, it has been
since widely tested in both monocots and dicots. The
most common benefits of this endophyte have been
reported to be growth promotion (Sahay and Varma
1999; Rai et al. 2001; Bagde et al. 2011; Satheesan et al.
2012; Noora et al. 2017), as well as inducing resistance

against abiotic stress such as drought (Sherameti et al.
2008; Hosseini et al. 2017; Hussin et al. 2017; Ahmadvand
and Hajinia 2018) and salinity (Waller et al. 2005; Sinclair
et al. 2013; Abdelaziz et al. 2017; Li et al. 2017; Sharma
et al. 2017). Some studies also report a beneficial role
against pathogens (Cosme et al. 2016; Lin et al. 2019),
but this field is less studied.

Not a considerable amount of studies worked with mul-
tiple endophytes at once. Some articles referred to various
endophytes from different phyla (6%), through the appli-
cation of various potential endophytes or a selection
from the microbiome of the host plant. In this case, studies
use a consortium of fungal strains, though using a consor-
tium of both bacterial and fungal strains like done by Var-
key et al. (2018) was apparently more common.
Furthermore, a scarce number of studies worked with
the whole microbiome from a plant (4%). We hypothesize
that the scarcity of these types of study is a sign of
researchers considering beneficial properties provided by
individual endophytes more relevant than their inter-
actions within plant tissue. This, at the same time, is prob-
ably due to the complications that involve studying several
endophytic species at once since, according to Kivlin et al.
(2013), since the interactions depend on not clear con-
ditions, there is the danger of underestimating or overesti-
mating the global effects of a group of endophytes.

3.2. Host plant and their diversity

Results of the analysis regarding endophyte host plants are
illustrated in Figure 4. Poaceae family dominates the studies
with half of the literature results (51%). The other half refers
mostly to a diversity of host plants, usually of economic rel-
evance, and only a few studies refer their experiments to sev-
eral plant families.

As seen in Figure 3(b), ryegrass (Lolium sp.) stands out
among the recurrent host plants. This grass genus, which
includes Lolium perenne, Lolium arundinaceum, and Lolium
multiflorum, has been included in more than 16% of the total
number of articles. We consider that the main reasons for
this might be its wide range, importance in the cattle sector,
and identity as host of Epichloë endophytes. Another well-
used monocot in literature is rice (Oryza sativa). This is
one of the most relevant food crops in the world and is
inoculated with non-host endophytes in order to obtain

Figure 3. Most common endophyte genera (a) and study plant genera (b) found in literature research.
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growth enhancement and abiotic stress tolerance. Other
species from the Poaceae family commonly mentioned are
barley (Hordeum vulgare), maize (Zea mays), common
wheat (Triticum aestivum), and red fescue (Festuca rubra)
in order of recurrence. All of them are extensively cultivated
species, and barley and red fescue, along with some close
relatives, are also commonly infected with Epichloë sp.

Monocots are surely the prevalent plant group of interest,
since they are of great economic and cultural relevance and
are relatively easy to work with. However, dicot plants as
endophyte hosts have yet a lot of unrevealed potential.
Around 30% of the studies covered species that belong to
families with relevance as food resources such as Solanaceae,
Fabaceae, Brassicaceae, and Cucurbitaceae. Among these, the
most used species are tomato (Solanum lycopersicum) and
soybean (Glycine max), which take part in around 9% and
5% of the articles, respectively. Both species hold great econ-
omic value similar to the previously mentioned monocots,
yet are seldom used as biological models in front of biotic
stress.

The remaining studies in the database worked with plants
that have significance either as ornamental plants, ecological
models, or sources for other goods such as medicine, lumber,
or resin. In addition to these, a few articles (barely 4%) need
to be considered for applying endophytes to several plant
species that belong to different families.

Finally, the environment in which plants grow and where
the experiments are conducted can also have an impact on
the reliability of the results. Although field experiments
would be the most realistic approach for the studies (Rai
et al. 2001; Zhou et al. 2018), it is difficult to perform this
kind of experiments because of the complexity of all the fac-
tors that get involved in it. Instead, most publications
referred to growth chambers and greenhouses to carry out
their experiments. On the opposite, a couple of studies
(5%) performed their experiments only in vitro bioassays
(Dovana et al. 2015; Khan et al. 2017), usually with mutant
rice. This last kind of studies has particularly controlled
environmental conditions and further experiments would
be required to test the effects of the endophytes on the behav-
ior and interactions of the host plant under more realistic
conditions.

3.3. Host plant and study plant conditions

Since the original host plant of the studied endophytes may
differ from the study’s host plant, the information regarding
their conditions was recorded (Figure 5).

Around 30% of the studies referred to host plants from
wild origin (Li et al. 2017; Li et al. 2018). We consider study-
ing endophytes from nature-adapted plants of great signifi-
cance due to their biodiversity and wide-ranging
microbiome. Those endophytes are also typically acquired
from locations with extreme environmental conditions
such as deserts to assess their potential role in adverse con-
ditions. On the contrary, only 18% of study plants were
clearly traditional or wild plants, against 53% of the studies
that inoculated cultivated species. This confirms that
finding endophytes from wild origin to use them as means
to improve the behavior of crops is more relevant than dis-
cerning their role in a natural environment.

In 52% of the articles, isolating the fungal endophyte
strains was an integral part of the study. In the other cases,
the strains were either isolated in previous work of the
research group or provided by microbial banks or another
entity.

On another note, we compared the identity of the host
and study plant. In this case, we could see that the fungal
endophyte was inoculated to the same host plant species
from which it was isolated in at least 48% of the articles,
while at least 25% of them used a different species of host
plants in the experiments. Inoculation of the same plant
species from which the endophyte was isolated is, possibly,
an indicator of the interest in exploring the effect of the
endophyte on its natural host.

There also was a tendency to use some methods in order
to produce endophyte-free plants, but this seems to be of
decreasing importance in the more recent studies. These
methods are specified in Table 1, and focus on obtaining
plants that are cleared up from any microbiota to avoid inter-
ference with the endophyte of interest. Among these treat-
ments, systemic fungicide treatment prevailed (11%),
especially in the early years of research. However, these prac-
tices have been discontinued since, presumably due to the
need of considering interaction within the plant microbiome
in order to ascertain the effect of the study endophyte. Like-
wise, heat treatment use has almost disappeared nowadays
(4%). In this case, the reason may be the possible negative
impact of heat treatment in seed germination and future
plant physiologic aspects and performance. The only method
that is still used with the same incidence as before is the indi-
vidual selection of study material (6%). This is a procedure
that usually makes use of microscopy to identify the presence
or absence of the study endophyte to classify their plant
material. In the end, these treatments are not used anymore
on a current basis, and most of the studies (73%) tend to not
apply them. This includes the great number of publications
where inoculated plants differ from the original host plant
of the study endophyte and the other studies that only resort
to surface sterilization of the seeds before inoculation.

3.4. Role of fungal endophytes in studied plants

Plants are always exposed to multiple environmental factors
and many of them can result in biological stress, an adverse
condition that inhibits their normal functioning (Jones and

Figure 4. Family of study host plant recurrence in literature research.
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Jones 1989). However, fungal endophytes can also affect
multiple aspects of the host plant’s life cycle. It has been
extensively reported how fungal endophytes can alter host
physiology under stress and confer tolerance to host plants
by enhancing activation of the host’s defense system (Tidke
et al. 2017; Shankar Naik 2019). The diverse effects that
endophytes trigger in their host plants can range from
growth improvement to protection against cattle. Thus, the
effects are not straightforward and there is a whole range
of benefits that could be induced in the plant and play a criti-
cal role in their resilience (Rodriguez et al. 2009; Mei and
Flinn 2010; White and Torres 2010).

In this study, studied effects of fungal endophytes are
sorted as seen in Figure 6. Resistance against abiotic stress
is the most studied condition (57%), followed by growth pro-
motion (20%) and resistance against biotic stress (15%). The
remaining articles experimented with several types of plant
stress conditions (8%).

In the following sections, we check the specific results for
each type of stress, taking into account individual results for
the studies.

3.4.1. Effect of fungal endophytes under abiotic stress
With the advance of climate change, plants are severely
exposed to abiotic stress, both physical and chemical. Abiotic
stress is defined, according to Ben-Ari and Lavi (2012), as the
negative impact of non-living factors on living organisms in
a specific environment. These conditions, such as water
deficit, extreme temperature, soil salinity and heavy metal
contamination are common adversities that affect crop pro-
ductivity worldwide.

In this context, endophytes can play a significant role in
conferring stress tolerance to host plants by altering water
relations, osmolyte production, and synthesis of hormones
and reactive oxygen species (ROS) (Shankar Naik 2019).
Thus, we believe that countering the extensive consequences
of global warming and contamination is one of the main
goals of studying fungal endophytes. The interest in the
potential induction of resistance against abiotic stress is
reflected in a high number of the analyzed articles in the cur-
rent review (55%). The specific stress conditions tested in
each study are classified and presented in Figure 7(a).

Water stress takes part in 40% of the studies, and this
being the most studied condition is expected since drought
is the most widespread limiting factor for plant productivity
(Kane 2011; Ahmadvand and Hajinia 2018; Kavroulakis et al.
2018; Kuzhuppillymyal-Prabhakarankutty et al. 2020). Fol-
lowing water stress, heavy metals (Bilal et al. 2018; Ikram
et al. 2018) and salinity stress (Radhakrishnan et al. 2015;
Wang et al. 2020) were also recurrently studied, with each
covering 22% and 18% of the studies about abiotic stress,
respectively. These are the commonest source of soil con-
tamination, and both are capable of interfering with vital cel-
lular processes and causing severe injuries to plants (Munns
and Tester 2008; Yadav 2010).

Figure 5. Host plant origin in literature research. (*) Not stated or endophyte is whether from soil, previously isolated or provided by a bank.

Table 1. Used method to obtain endophyte-free plants besides surface
sterilization.

Recurrence Method Description Potential consequences

12% Fungicide Application of chemical
compounds such as
propiconazole or
systemic fungicide like
benomyl to seed
plants.

Harm to physiologic
functions and growth
of the plants.

4% Heat Application of high
temperatures to seed
plants, with specific
conditions that are
previously tested.
Temperature is higher
than 50°C, either with
hot water or in oven,
for a period between
an hour and a week.

Physical damage and
germination difficulty
of seeds, physiologic
alteration of plants.

1% Storage Infected seeds are stored
at room temperature
for a long period of
time, which sometimes
result in a loss of
endophyte infection.

Incomplete removal of
the fungal endophyte
from the seeds.

6% Selection Individual selection of
seeds, either as an
option provided from
seed bank or after
examination by
microscopy.

Error in detection of
endophyte strain.

77% None There’s no method
applied to eliminate
endophytes from plant
besides surface
sterilization of the used
seeds.

Not considered.
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The remaining articles dealt with temperature stress,
nutrient availability, cutting and other minor categories. It
is known that plants subjected to extreme temperature stress
alter processes that critically affect development and growth
(Bokszczanin and Fragkostefanakis 2013). However, it is sur-
prising there isn’t a considerable amount of studies about the
stress caused by temperature change, albeit the importance
of its environmental effects. In this way, Acuña-Rodríguez
et al. (2020) consider cold stress as a substantial gap in this
study field, and according to their analysis, microbial sym-
bionts confer more benefits at low temperatures.

3.4.2. Effect of fungal endophytes under biotic stress
Another relevant condition that can affect plants severely is
biotic stress. Biotic stress refers to the negative impact caused
by other living organisms, usually plant pathogens like
insects, nematodes, pathogenic bacteria, and fungi or com-
petitive plants or weeds (Gull et al. 2019). Plants respond
to this type of stress with defense mechanisms of their
immune system, generating chemical compounds such as
salicylic acid (SA) or jasmonic acid (JA), producing proteins
and enzymes, increasing cell lignification and other morpho-
logical or structural barriers (Madani et al. 2018).

In order to confront biotic stress, endophytic symbioses
can play an important role, since these associations are

reported to affect the performance and behavior of patho-
genic organisms (Hartley and Gange 2009; Shankar Naik
2019). In this way, entomopathogenic fungi (EPF) are com-
mon in terrestrial environments and can be important natu-
ral regulators of insect and arachnid populations (Chandler
2017).

However, the analysis reveals that, compared to abiotic
stress, endophyte roles regarding biotic stress are much less
studied. Less than 20% of articles studied the role of
endophytes for biotic stress resistance. Biotic stressors
(Figure 7b) mainly cover fungal pathogens (Waqas et al.
2015), insects (Cosme et al. 2016), and soil nematodes (Liarzi
et al. 2016). Fungi pathogens are present in 41% of studies,
while insects add up to 23% and nematodes to 16%. Thus,
the main tested effect of fungal endophytes is to confer pro-
tection against other fungi, presumably pathogenic, and
probably anticipating a competition for the ecological
niche (Oliva et al. 2021).

Interestingly, the effect of fungal endophytes against bac-
terial pathogens was rarely evaluated (6%). In spite of that,
manuscripts describing the protective effect of fungal endo-
phytes against bacterial pathogens usually report good con-
trol of the disease. For instance, Lin et al. (2019) observed
that plants treated with Serendipita indica and infected
with the bacterial pathogen Ralstonia solanacearum showed
an enhanced response of the Jasmonic acid pathway and
the expression of VSP, PR1 and PR5 genes.

3.4.3. Effect of fungal endophytes in promoting growth
Aside from detrimental abiotic and biotic stress conditions,
the growth properties of plants are the main concern in
crops. Fungal endophytes, along with bacterial endophytes
and mycorrhizae, are associated with the transfer of nutrients
and minerals in the host plant (Shankar Naik 2019), so they
are biological treatments that can improve different aspects
of the plant life cycle. In this way, Plant Growth Promoting
Fungi (PGPF) are known as beneficial fungi in close inter-
action with plants, inducing an enhancement of the plant
performance by alteration of physiological pathways and
molecular mechanism regulation. They’re also associated
with induced systemic resistance (ISR) through the ability
to enhance nutrient uptake and phytohormone production
(Hossain et al. 2017).

Therefore, fungal endophytes have been extensively
studied for their beneficial properties and potential to

Figure 6. Potential roles of fungal endophytes studied in literature research.

Figure 7. Most studied potential roles of fungal endophytes in front of abiotic (a) and biotic (b) stresses.
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enhance productivity for crop plants. The literature research
conducted in this paper reveals that studies focused on PGPF
take near 20% of the fungal endophyte investigation, cover-
ing both in vitro and in field application on plants. These
reports cover their beneficial effects on germination (Vuja-
novic et al. 2016), nutrient uptake (Khayamim et al. 2011),
host plant vigor, biomass (Al-Hosni et al. 2018), and fruit
production (Rho et al. 2020), all in accordance with an eco-
logical agriculture approach.

Among the studies that assess growth promotion, 80% of
the research is done in absence of pathogens in stable
environmental conditions, while the other 20% further
studied the effects of the same endophytes when the host
plants were exposed to abiotic or biotic stress. The latter
scenario is especially useful since it allows comparison of
effects both on stable and stress conditions. It should be
reminded that the effects on growth promotion only under
stress conditions are not accounted for in this section since
it has no stable conditions to be compared to.

3.5. Results of efficacy

Research results are decisive to know the real impact of the
experimental studies. As expected, most analyzed articles
in the current review report beneficial roles of the studied
endophytes, irrespective of the magnitude of the effects.
We categorized these results as good, neutral or variable.
We expected to find a high number of positive results
since there is a preference for reporting positive results and
keeping the negative ones unpublished (Mehta 2019).

Around a quarter of the studies agreed that the effects
on the host and environmental factors are variable, to
the extent that some endophytes could negatively affect
the host plant in some way. This potential negative impact
is likewise reported in a small number of articles that were
not able to provide positive results. This usually occurred
in experiments that focus on finding new effects of pre-
viously known endophytic fungi, such as Epichloë spp.,
inoculating it on non-host plants and/or under new con-
ditions (Hall et al. 2014; Heineck et al. 2018). It is to be
noted that the particular conditions of the experiments
can affect the reliability of the study comparisons (Arnold
2007). For instance, as observed by Singh et al. (2016) with
Serendipita indica, growth media can influence the
relationship between the fungal endophytes and their
host plant. Yokoya et al. (2017) also showed how habitats
with suboptimal conditions have more endophytes that
prove to be beneficial to their host plant. Regardless, we
consider these results to be key in providing knowledge
about research limitations since they indicate what can
be avoided in future studies.

4. Conclusions and future prospects

This work has analyzed the current structure of fungal endo-
phyte research, focused on the organization and variables of
the studies that aim to find beneficial effects of fungal endo-
phytes on a host plant. This field of study has been on the ris-
ing trend for 20 years now and has worked mostly on
Ascomycota fungi, with ubiquitous and widely known endo-
phytes such as Epichloë spp. We here confirmed that only a
few fungal species are recurrently studied as endophytes,
while there is a broad spectrum of novel, potentially

interesting endophytic fungi that have only been sporadically
studied. Moreover, less than 10% of the studies deal with sev-
eral endophytes, implying a shortage of studies regarding the
symbioses interaction and the high difficulty attached to
them. Furthermore, other analyzed aspects of the study
also denote certain gaps. In particular, host plants are still
mainly monocots like Lolium spp., leaving fair room to
improve on dicots’ studies. Wild species are frequently
used as a source of fungal endophytes but quite less as
study plants. The potential effects of fungal endophytes are
most commonly tested on cultivated species (between 51%
and 80%) and assessed in front of abiotic stress (around
57%), especially on drought conditions. A relevant abiotic
scenario that is surprisingly barely studied is stress caused
by temperature changes (11%), especially cold stress. Biotic
stress experiments, in turn, only appear in 15% of the litera-
ture, and among the biotic factors, fungal pathogens are the
most studied, while other biotic factors like bacterial patho-
gens are scarcely covered. On another note, resorting to pro-
cedures to ensure endophyte-free plants has decreased lately.
The majority of the studies use growth chambers or green-
house experiments, while field studies are very limited.
Lastly, we found that more than 25% of the studies reported
neutral, variable, or negative effects from some endophytes,
which denotes the difficulty of this experimental research.

The results showed in this work highlight the interest in
the field of the use of fungal endophytes to improve the
plant performance, but also uncover certain areas are still
understudied such as protection against bacterial diseases.
Despite that, the use of fungal endophytes is still in its begin-
ning and presents some interesting questions for future
studies such as: what is the effect of an introduced endophyte
in the plant microbiome?, could it affect other functions
besides the studied ones? Could different fungal endophytes
be combined in a synthetic community to achieve a broad
spectrum of protection? Is the observed effect caused by
the presence of the endophyte or by its secreted metabolites?
If the latter, could it be possible to mimick the effect using
endophyte exudates?

Taken together, fungal endophytes and their interaction
with their host plant are still an intricate subject, with
effects that vary from mutualist to pathogenic depending
on several factors. Nonetheless, their relevance as a poten-
tial source of growth promotion and stress tolerance is
unquestionably recognized, and their beneficial effects on
plant physiology are reported across several endophytes
and host plants. The results presented here demonstrate
the incidence and direction of fungal endophyte research,
and also prove the presence of some unexplored subjects
in the field, especially regarding dicot plants and against
biotic stress.
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