1,078 research outputs found

    A Hybrid Quantum-Classical Hamiltonian Learning Algorithm

    Full text link
    Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators. In this paper, we propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator components of the Hamiltonian. Its main subroutine is the practical log-partition function estimation algorithm, which is based on the minimization of the free energy of the system. Concretely, we devise a stochastic variational quantum eigensolver (SVQE) to diagonalize the Hamiltonians and then exploit the obtained eigenvalues to compute the free energy's global minimum using convex optimization. Our approach not only avoids the challenge of estimating von Neumann entropy in free energy minimization, but also reduces the quantum resources via importance sampling in Hamiltonian diagonalization, facilitating the implementation of our method on near-term quantum devices. Finally, we demonstrate our approach's validity by conducting numerical experiments with Hamiltonians of interest in quantum many-body physics.Comment: 24 page

    Distinct roles in autophagy and importance in infectivity of the two ATG4 cysteine peptidases of leishmania major

    Get PDF
    Macroautophagy in Leishmania, which is important for the cellular remodeling required during differentiation, relies upon the hydrolytic activity of two ATG4 cysteine peptidases (ATG4.1 and ATG4.2). We have investigated the individual contributions of each ATG4 to Leishmania major by generating individual gene deletion mutants (Δatg4.1 and Δatg4.2); double mutants could not be generated, indicating that ATG4 activity is required for parasite viability. Both mutants were viable as promastigotes and infected macrophages in vitro and mice, but Δatg4.2 survived poorly irrespective of infection with promastigotes or amastigotes, whereas this was the case only when promastigotes of Δatg4.1 were used. Promastigotes of Δatg4.2 but not Δatg4.1 were more susceptible than wild type promastigotes to starvation and oxidative stresses, which correlated with increased reactive oxygen species levels and oxidatively damaged proteins in the cells as well as impaired mitochondrial function. The antioxidant N-acetylcysteine reversed this phenotype, reducing both basal and induced autophagy and restoring mitochondrial function, indicating a relationship between reactive oxygen species levels and autophagy. Deletion of ATG4.2 had a more dramatic effect upon autophagy than did deletion of ATG4.1. This phenotype is consistent with a reduced efficiency in the autophagic process in Δatg4.2, possibly due to ATG4.2 having a key role in removal of ATG8 from mature autophagosomes and thus facilitating delivery to the lysosomal network. These findings show that there is a level of functional redundancy between the two ATG4s, and that ATG4.2 appears to be the more important. Moreover, the low infectivity of Δatg4.2 demonstrates that autophagy is important for the virulence of the parasite

    Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    Get PDF
    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles

    Comparison of Cochlear Morphology and Apoptosis in Mouse Models of Presbycusis

    Get PDF
    ObjectivesMorphological studies on presbycusis, or age-related hearing loss, have been performed in several different strains of mice that demonstrate hearing loss with auditory pathology. The C57BL/6 (C57) mouse is a known model of early onset presbycusis, while the CBA mouse is characterized by relatively late onset hearing loss. We performed this study to further understand how early onset hearing loss is related with the aging process of the cochlea.MethodsWe compared C57 cochlear pathology and its accompanying apoptotic processes to those in CBA mice. Hearing thresholds and outer hair cell functions have been evaluated by auditory brainstem response (ABR) recordings and distortion product otoacoustic emission (DPOAE).ResultsABR recordings and DPOAE studies demonstrated high frequency hearing loss in C57 mice at P3mo of age. Cochlear morphologic studies of P1mo C57 and CBA mice did not show differences in the organ of Corti, spiral ganglion, or stria vascularis. However, from P3mo and onwards, a predominant early outer hair cell degeneration at the basal turn of the cochlea in C57 mice without definitive degeneration of spiral ganglion cells and stria vascularis/spiral ligament, compared with CBA mice, was observed. Additionally, apoptotic processes in the C57 mice also demonstrated an earlier progression.ConclusionThese data suggest that the C57 mouse could be an excellent animal model for early onset 'sensory' presbycusis in their young age until P6mo. Further studies to investigate the intrinsic or extrinsic etiologic factors that lead to the early degeneration of organ of Corti, especially in the high frequency region, in C57 mice may provide a possible pathological mechanism of early onset hearing loss

    RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cell survival and limit proliferation

    Get PDF
    Interleukin 7 (IL-7) promotes pre–B cell survival and proliferation by activating the Pim1 and Akt kinases. These signals must be attenuated to induce G1 cell cycle arrest and expression of the RAG endonuclease, which are both required for IgL chain gene rearrangement. As lost IL-7 signals would limit pre–B cell survival, how cells survive during IgL chain gene rearrangement remains unclear. We show that RAG-induced DNA double-strand breaks (DSBs) generated during IgL chain gene assembly paradoxically promote pre–B cell survival. This occurs through the ATM-dependent induction of Pim2 kinase expression. Similar to Pim1, Pim2 phosphorylates BAD, which antagonizes the pro-apoptotic function of BAX. However, unlike IL-7 induction of Pim1, RAG DSB-mediated induction of Pim2 does not drive proliferation. Rather, Pim2 has antiproliferative functions that prevent the transit of pre–B cells harboring RAG DSBs from G1 into S phase, where these DNA breaks could be aberrantly repaired. Thus, signals from IL-7 and RAG DSBs activate distinct Pim kinase family members that have context-dependent activities in regulating pre–B cell proliferation and survival

    Apoptosis in Cardiovascular Diseases: Mechanism and Clinical Implications

    Get PDF
    Apoptosis is a tightly regulated, cell deletion process that plays an important role in various cardiovascular diseases, such as myocardial infarction, reperfusion injury, and heart failure. Since cardiomyocyte loss is the most important determinant of patient morbidity and mortality, fully understanding the regulatory mechanisms of apoptotic signaling is crucial. In fact, the inhibition of cardiac apoptosis holds promise as an effective therapeutic strategy for cardiovascular diseases. Caspase, a critical enzyme in the induction and execution of apoptosis, has been the main potential target for achieving anti-apoptotic therapy. Studies suggest, however, that a caspase-independent pathway may also play an important role in cardiac apoptosis, although the mechanism and potential significance of caspase-independent apoptosis in the heart remain poorly understood. Herein we discuss the role of apoptosis in various cardiovascular diseases, provide an update on current knowledge about the molecular mechanisms that govern apoptosis, and discuss the clinical implications of anti-apoptotic therapies

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway

    Get PDF
    Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer
    corecore