148 research outputs found
What is the Role of Acid-Acid Interactions in Asymmetric Phosphoric Acid Organocatalysis? A Detailed Mechanistic Study using Interlocked and Non-Interlocked Catalysts
Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst-catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which react mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and a direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid-acid interactions have a drastic influence on the reaction rate and stereoselectivity of the asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids
Analysis of large oxygenated and nitrated polycyclic aromatic hydrocarbons formed under simulated diesel engine exhaust conditions (by compound fingerprints with SPE/LC-API-MS)
The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs
The Treatment of Uncertainties in Reactive Pollution Dispersion Models at Urban Scales
The ability to predict NO2 concentrations ([NO¬2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO¬2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, a Reynolds Averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO¬2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO¬2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO+O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO¬2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was found to be the background wind direction. The study highlights the key parameters required for reliable [NO¬2] estimations suggesting that accurate reference measurements for wind direction should be a critical part of air quality assessments for in-street locations. It also highlights the importance of street scale chemical processes in forming road-side [NO¬2], particularly for regions of high NOx emissions such as close to traffic queues
Factors associated with self-assessed increase in tobacco consumption among over-indebted individuals in Germany: a cross-sectional study
Background
Over-indebtedness is an increasing phenomenon in industrialised nations causing individual hardship and societal problems. Nonetheless, few studies have explored smoking among over-indebted individuals.
Methods
A cross-sectional survey (n=949) on retrospectively assessed changes in tobacco consumption was carried out in 2006 and 2007 among clients of 84 officially approved debt and insolvency counselling centres in Germany (response rate 39.7%). Logistic regressions were performed to explore factors associated with reports of increased smoking after onset of over-indebtedness.
Results
63% of all respondents stated daily or occasional tobacco consumption. Almost one fifth reported an increase in smoking after becoming over-indebted. Females were less likely to report increased smoking than men (aOR 0.66, 95% CI 0.44-0.99) whereas respondents who had been over-indebted for more than 10 years were more likely to report increased smoking than those who had been over-indebted for less than five years (aOR 1.66; 95%-CI 1.00-2.76). The odds of increased smoking were also elevated among those who reported that their families and friends had withdrawn from them as a consequence of their over-indebtedness (aOR 1.82; 95%-CI 1.06-3.14).
Conclusions
The study identifies over-indebted individuals and particularly over-indebted men as a high-risk group of smokers. Low levels of social embeddedness/support were associated with a further increase in smoking after becoming over-indebted. Given recent increases of over-indebtedness, the findings highlight the need to develop appropriate public health policies
Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin
Different Domains of the RNA Polymerase of Infectious Bursal Disease Virus Contribute to Virulence
BACKGROUND: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS: Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE: The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses
Advances in mass spectrometry-based post-column bioaffinity profiling of mixtures
In the screening of complex mixtures, for example combinatorial libraries, natural extracts, and metabolic incubations, different approaches are used for integrated bioaffinity screening. Four major strategies can be used for screening of bioactive mixtures for protein targets—pre-column and post-column off-line, at-line, and on-line strategies. The focus of this review is on recent developments in post-column on-line screening, and the role of mass spectrometry (MS) in these systems. On-line screening systems integrate separation sciences, mass spectrometry, and biochemical methodology, enabling screening for active compounds in complex mixtures. There are three main variants of on-line MS based bioassays: the mass spectrometer is used for ligand identification only; the mass spectrometer is used for both ligand identification and bioassay readout; or MS detection is conducted in parallel with at-line microfractionation with off-line bioaffinity analysis. On the basis of the different fields of application of on-line screening, the principles are explained and their usefulness in the different fields of drug research is critically evaluated. Furthermore, off-line screening is discussed briefly with the on-line and at-line approaches
Association between overweight, obesity and self-perceived job insecurity in German employees
<p>Abstract</p> <p>Background</p> <p>Recent studies have shown an association between job insecurity and morbidity as well as mortality, however until now, knowledge about a potential association between job insecurity and overweight or obesity has been lacking.</p> <p>Methods</p> <p>In order to identify a possible association between job insecurity and overweight or obesity, we analysed data from the German Socioeconomic Panel (GSOEP) 2004/2005, a longitudinal study of private households in Germany. In this representative cohort of the German adult population, living and working conditions were observed. Data on Body Mass Index (BMI) and self-perceived probability of job loss within the next 2 years were available for 10,747 adults either employed or attending training programs.</p> <p>Results</p> <p>We identified 5,216 (49%) individuals as being overweight (BMI > 25 kg/m<sup>2</sup>) and 1,358(13%) individuals as being obese (BMI > 30 kg/m<sup>2</sup>). A total of 5,941 (55%) participants reported having concerns regarding job insecurity. In the multivariate analysis - after adjustment for relevant confounders - a statistically significant association between obesity and job insecurity (100% probability for losing the job in the following two years) could be observed with an adjusted odds ratio of 2.55 (95% confidence interval: 1.09-5.96).</p> <p>Conclusions</p> <p>Because of these results, we were able to conclude that overweight and obese persons perceive job insecurity more often than their normal weight counterparts in Germany and that the concurrence of obesity and job insecurity might lead employees into a vicious cycle. Further research with an emphasis on the occupational setting might be necessary in order to establish useful preventive programmes at the workplace.</p
Basal cell carcinoma risk and solar UV exposure in occupationally relevant anatomic sites: do histological subtype, tumor localization and Fitzpatrick phototype play a role? A population-based case-control study
Background
A two-fold risk increase to develop basal cell carcinoma was seen in outdoor workers exposed to high solar UV radiation compared to controls. However, there is an ongoing discussion whether histopathological subtype, tumor localization and Fitzpatrick phototype may influence the risk estimates.
Objectives
To evaluate the influence of histological subtype, tumor localization and Fitzpatrick phototype on the risk to develop basal cell carcinoma in highly UV-exposed cases and controls compared to those with moderate or low solar UV exposure.
Methods
Six hundred forty-three participants suffering from incident basal cell carcinoma in commonly sun-exposed anatomic sites (capillitium, face, lip, neck, dorsum of the hands, forearms outside, décolleté) of a population-based, case-control, multicenter study performed from 2013 to 2015 in Germany were matched to controls without skin cancer. Multivariate logistic regression analysis was conducted stratified for histological subtype, phototype 1/2 and 3/4. Dose-response curves adjusted for age, age2, sex, phototype and non-occupational UV exposure were calculated.
Results
Participants with high versus no (OR 2.08; 95% CI 1.24–3.50; p = 0.006) or versus moderate (OR 2.05; 95% CI 1.15–3.65; p = 0.015) occupational UV exposure showed a more than two-fold significantly increased risk to develop BCC in commonly UV-exposed body sites. Multivariate regression analysis did not show an influence of phototype or histological subtype on risk estimates. The restriction of the analysis to BCC cases in commonly sun-exposed body sites did not influence the risk estimates. The occupational UV dosage leading to a 2-fold increased basal cell carcinoma risk was 6126 standard erythema doses.
Conclusion
The risk to develop basal cell carcinoma in highly occupationally UV-exposed skin was doubled consistently, independent of histological subtype, tumor localization and Fitzpatrick phototype
- …