61 research outputs found

    Methods for analysis of deep sequencing data from mixtures of Plasmodium falciparum clones or stage-specific transcriptomes

    Get PDF
    Malaria is a life-threatening infectious disease caused by Plasmodium parasites transmitted to humans through bites of infected Anopheles mosquitos. An estimated 445,000 people die every year by an infection with Plasmodium parasites, most of them children living in sub-Saharan Africa. As a result of increased malaria control, the mortality was greatly reduced in the last decades. To develop new tools for elimination and to evaluate the impact of control, a good understanding of the epidemiology and biology of malaria parasites is required. Studies of infection and transmission dynamics of Plasmodium parasites were greatly improved by distinguishing individual parasite clones and monitoring their infection dynamics over time. In regions with high transmission of Plasmodium parasites, individuals are often infected with several clones concurrently. Individual parasites clones can be identified by genotyping. The current standard method used for genotyping is amplification of highly length-polymorphic merozoite surface protein 2 (msp2) or other antigen genes followed by sizing of the amplicon by capillary electrophoresis (CE). The sensitivity to detect low-abundant clones (minority clones) of msp2-CE genotyping is however limited, resulting in an underestimation of multiplicity of infection (MOI). A shortfall of this genotyping method is that frequency of individual clones within a sample cannot be determined. This urges the search for new genotyping methods that rely on sequencing of genomic fragments with extensive single nucleotide polymorphism (SNP). Improvement in next generation sequencing (NGS) technologies permitted the use of amplicon sequencing (Amp-Seq) in epidemiological studies. Genotyping by amplicon sequencing has a higher sensitivity to detect minority clones, can quantify the frequency of each clone within a sample, and allows the use of SNP polymorphic markers. In the frame of this thesis, a new Amp-Seq genotyping assay was developed, including known SNP polymorphic markers, and novel marker ‘cpmp’, as well as a bioinformatic analysis workflow. This genotyping assay was applied on field samples from a longitudinal study conducted in Papua New Guinea. A comparison to msp2-CE genotyping confirmed the higher sensitivity to detect minority clones by Amp-Seq genotyping method and showed a significant underestimation of MOI by classical size polymorphic marker. However, no significant increase in molecular force of infection (molFOI), i.e. number of new infections per individual per year, was observed. Quantification of the frequency of individual clones in longitudinal samples permitted to infer multi-locus haplotypes. Multi-locus haplotypes increased discriminatory power of genotyping and robustly distinguished new infections from those detected in an individual earlier. For calculating the density of clones from multi-clone infections the within-host clone frequency is multiplied by parasitaemia of this infection determined by quantitative PCR. Density of individual parasites clones in multi-clone infections over time is a new parameter for epidemiological studies. It will permit to study the dynamics, and thus fitness, of parasite clones exposed to within-host competition or to acquired natural immunity. NGS also gained great importance in gene expression studies of Plasmodium parasites in patient samples. Transcriptome studies are complicated by the mixture of different developmental stages present concurrently in samples collected from patients. Even in in vitro cultured samples after tight synchronisation or enrichment of a specific developmental stage, small fractions of other development stages are still found. This problem is of particular relevance for P. vivax, as the absence of continuous in vitro culture so far has hampered the study of isolated parasite stages. For example, the transcriptome of P. vivax gametocytes, one of the stages found in peripheral blood and infective to mosquitos, has not yet been described. A solution for differentiating mixed transcription may come from deconvolution methods, which either infer the stage proportion in samples or stage-specific transcriptome signatures. A large selection of different deconvolution methods has been developed for the analysis of heterogeneous tissues, e.g. cancer tissues or hematopoietic cell, but these methods have rarely been applied to mixed stages of malaria parasites. The best suited combination of normalisation and deconvolution methods for analysis of RNA sequencing (RNA-Seq) data from mixed-stage samples of Plasmodium parasites was evaluated based on experimentally mixed highly synchronised blood stages. Normalisation by count per million and deconvolution with a negative binomial regression model followed by selection of genes with significant fold change resulted in the best agreement with transcriptomes as observed in single stages. This strategy can easily be transferred to Plasmodium field samples with known stage proportions. This analysis performed in cultured parasites of defined mixed stages served as proof-of-concept and confirmed that identification of stage-specific genes is feasible also in field samples, notably in species that cannot be cultivated, such as P. vivax. NGS permits fundamentally new approaches to study Plasmodium parasites. This thesis presents a novel marker and data analysis platform for highly sensitive P. falciparum genotyping. Furthermore, a best practice workflow was identified to infer stage-specific gene expression from parasite infections consisting of mixed developmental stages. This provides a crucial tool for the analysis of gene expression data generated from Plasmodium field samples

    Amplicon deep sequencing improves Plasmodium falciparum genotyping in clinical trials of antimalarial drugs

    Get PDF
    Clinical trials monitoring malaria drug resistance require genotyping of recurrent Plasmodium falciparum parasites to distinguish between treatment failure and new infection occurring during the trial follow up period. Because trial participants usually harbour multi-clonal P. falciparum infections, deep amplicon sequencing (AmpSeq) was employed to improve sensitivity and reliability of minority clone detection. Paired samples from 32 drug trial participants were Illumina deep-sequenced for five molecular markers. Reads were analysed by custom-made software HaplotypR and trial outcomes compared to results from the previous standard genotyping method based on length-polymorphic markers. Diversity of AmpSeq markers in pre-treatment samples was comparable or higher than length-polymorphic markers. AmpSeq was highly reproducible with consistent quantification of co-infecting parasite clones within a host. Outcomes of the three best-performing markers, cpmp, cpp and ama1-D3, agreed in 26/32 (81%) of patients. Discordance between the three markers performed per sample was much lower by AmpSeq (six patients) compared to length-polymorphic markers (eleven patients). Using AmpSeq for discrimination of recrudescence and new infection in antimalarial drug trials provides highly reproducible and robust characterization of clone dynamics during trial follow-up. AmpSeq overcomes limitations inherent to length-polymorphic markers. Regulatory clinical trials of antimalarial drugs will greatly benefit from this unbiased typing method

    Materials Characterization of Electron Beam Melted Ti-6Al-4V

    Get PDF
    An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Computed tomography (CT) scans indicated porosity closure during HIP and high-density inclusions scattered throughout the specimens. The results of tensile and high cycle fatigue (HCF) testing are compared to conventional Ti-6Al-4V. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V

    Properties of a Ni(sub 19.5)Pd(sub 30)Ti(sub 50.5) high-temperature shape memory alloy in tension and compression

    Get PDF
    Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip

    QuasR: quantification and annotation of short reads in R

    Get PDF
    Summary: QuasR is a package for the integrated analysis of high-throughput sequencing data in R, covering all steps from read preprocessing, alignment and quality control to quantification. QuasR supports different experiment types (including RNA-seq, ChIP-seq and Bis-seq) and analysis variants (e.g. paired-end, stranded, spliced and allele-specific), and is integrated in Bioconductor so that its output can be directly processed for statistical analysis and visualization. Availability and implementation: QuasR is implemented in R and C/C++. Source code and binaries for major platforms (Linux, OS X and MS Windows) are available from Bioconductor (www.bioconductor.org/packages/release/bioc/html/QuasR.html). The package includes a ‘vignette' with step-by-step examples for typical work flows. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    Get PDF
    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire

    Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii

    Get PDF
    BACKGROUND: The recently sequenced genome of the filamentous fungus Ashbya gossypii revealed remarkable similarities to that of the budding yeast Saccharomyces cerevisiae both at the level of homology and synteny (conservation of gene order). Thus, it became possible to reinvestigate the S. cerevisiae genome in the syntenic regions leading to an improved annotation. RESULTS: We have identified 23 novel S. cerevisiae open reading frames (ORFs) as syntenic homologs of A. gossypii genes; for all but one, homologs are present in other eukaryotes including humans. Other comparisons identified 13 overlooked introns and suggested 69 potential sequence corrections resulting in ORF extensions or ORF fusions with improved homology to the syntenic A. gossypii homologs. Of the proposed corrections, 25 were tested and confirmed by resequencing. In addition, homologs of nearly 1,000 S. cerevisiae ORFs, presently annotated as hypothetical, were found in A. gossypii at syntenic positions and can therefore be considered as authentic genes. Finally, we suggest that over 400 S. cerevisiae ORFs that overlap other ORFs in S. cerevisiae and for which no homolog can be detected in A. gossypii should be regarded as spurious. CONCLUSIONS: Although, the S. cerevisiae genome is rightly considered as one of the most accurately sequenced and annotated eukaryotic genomes, we have shown that it still benefits substantially from comparison to the completed sequence and syntenic gene map of A. gossypii, an evolutionarily related fungus. This type of approach will strongly support the annotation of more complex genomes such as the human and murine genomes

    Development of amplicon deep sequencing markers and data analysis pipeline for genotyping multi-clonal malaria infections

    Get PDF
    Amplicon deep sequencing permits sensitive detection of minority clones and improves discriminatory power for genotyping multi-clone Plasmodium falciparum infections. New amplicon sequencing and data analysis protocols are needed for genotyping in epidemiological studies and drug efficacy trials of P. falciparum.; Targeted sequencing of molecular marker csp and novel marker cpmp was conducted in duplicate on mixtures of parasite culture strains and 37 field samples. A protocol allowing to multiplex up to 384 samples in a single sequencing run was applied. Software "HaplotypR" was developed for data analysis.; Cpmp was highly diverse (He = 0.96) in contrast to csp (He = 0.57). Minority clones were robustly detected if their frequency was >1%. False haplotype calls owing to sequencing errors were observed below that threshold.; To reliably detect haplotypes at very low frequencies, experiments are best performed in duplicate and should aim for coverage of >10'000 reads/amplicon. When compared to length polymorphic marker msp2, highly multiplexed amplicon sequencing displayed greater sensitivity in detecting minority clones

    Should Deep-Sequenced Amplicons Become the New Gold Standard for Analyzing Malaria Drug Clinical Trials?

    Get PDF
    Background. Regulatory clinical trials are required to ensure the continued supply and deployment of effective antimalarial drugs. Patient follow-up in such trials typically lasts several weeks as the drugs have long half-lives and new infections often occur during this period. “Molecular correction” is therefore used to distinguish drug failures from new infections. The current WHO-recommended method for molecular correction uses length-polymorphic alleles at highly diverse loci but is inherently poor at detecting low-density clones in polyclonal infections. This likely leads to substantial underestimates of failure rates, delaying the replacement of failing drugs with potentially lethal consequences. Deep-sequenced amplicons (AmpSeq) substantially increase the detectability of low-density clones and may offer a new “gold standard” for molecular correction. Pharmacological simulation of clinical trials was used to evaluate the suitability of AmpSeq for molecular correction. We investigated the impact of factors such as the number of amplicon loci analyzed, the informatics criteria used to distinguish genotyping “noise” from real low-density signals, the local epidemiology of malaria transmission, and the potential impact of genetic signals from gametocytes. AmpSeq greatly improved molecular correction and provided accurate drug failure rate estimates. The use of 3 to 5 amplicons was sufficient, and simple, nonstatistical criteria could be used to classify recurrent infections as drug failures or new infections. These results suggest AmpSeq is strongly placed to become the new standard for molecular correction in regulatory trials, with potential extension into routine surveillance once the requisite technical support becomes established

    Macroscopic and Microstructural Aspects of the Transformation Behavior in a Polycrystalline NiTi Shape Memory Alloy

    Get PDF
    The mechanical and microstructural behavior of a polycrystalline Ni(49.9)Ti(50.1) (at.%) shape memory alloy was investigated as a function of temperature around the transformation regime. The bulk macroscopic responses, measured using ex situ tensile deformation and impulse excitation tests, were compared to the microstructural evolution captured using in situ neutron diffraction. The onset stress for inelastic deformation and dynamic Young's modulus were found to decrease with temperature, in the martensite regime, reaching a significant minimum at approximately 80 C followed by an increase in both properties, attributed to the martensite to austenite transformation. The initial decrease in material compliance during heating affected the ease with which martensite reorientation and detwinning could occur, ultimately impacting the stress for inelastic deformation prior to the start of the reverse transformation
    corecore