32 research outputs found

    Pebble bed: reflector treatment and pressure\ud velocity coupling

    Get PDF
    In this report, we describe some models and numerical methods used to simulate the flow and temperature in a pebble bed modular nuclear reactor. The reactor core is filled with around 450000 spheres containing low enriched uranium and helium is forced through these hot pebbles to cool the system down. The group first investigated the flow model in the pebbles. Numerical aspects were then considered to tackle difficulties encountered with the flow simulation and the temperature inside the pebbles. Numerical schemes are presented that can significantly improve the accuracy of the computed results

    MIGHTEE-\HI: Possible interactions with the galaxy NGC~895

    Get PDF
    The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (\HI) is an excellent way to trace these interactions. Here, we present \HI\ observations of the spiral galaxy NGC~895, which was previously thought to be isolated. High-sensitivity \HI\ observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms, and the two newly discovered \HI\ companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_\_J022138.1-052631 which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC~895 is an actively star-forming galaxy with a SFR of 1.75±0.09[M⊙/yr]\mathrm{1.75 \pm 0.09 [M_{\odot}/yr]}, a value typical for high stellar mass galaxies on the star forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC~895 and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both \HI\ and optical to reveal a more complete picture of galaxy environments.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    Investigating atmospheric corrosion behavior of carbon steel in coastal regions of Mauritius using Raman Spectroscopy

    Get PDF
    Low carbon steel was exposed at two sites in Mauritius, namely Port Louis and Belle Mare. The site at Port Louis is basically an industrial marine one whereas the one at Belle Mare is a purely marine site. Though the corrosion loss trend at both sites follow the power law, the corrosion loss at Port Louis was found to be higher than that at Belle Mare. This study has been performed to investigate the surface characteristics of the rust layers of the samples exposed at the two sites, through Raman spectroscopy and SEM, so as to get a better insight into the mechanism of the atmospheric corrosion process. For Port Louis, it was observed that there was not much change in the corrosion products in the rust layer over the 3 years period. The structure was less compact than that at Belle Mare with the presence of lepidocrocite and akaganeite as commonly observed corrosion products. The corrosion rate at Port Louis is, therefore, expected to follow the same trend over the long term. For Belle Mare, the corrosion products changed significantly after 3 years of exposure. Though lepidocrocite and akaganeite were observed on the surface after 0.2 years of exposure, magnetite was the most probable corrosion product in the more compact rust layer after 3 years of exposure. This compactness of the rust layer is expected to have reduced the corrosion rate as compared to that of Port Louis. Significant changes in the corrosion rate at Belle Mare are, therefore, expected over the medium and the long term

    MIGHTEE-H i: possible interactions with the galaxy NGC 895

    Get PDF
    The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (H i) is an excellent way to trace these interactions. Here, we present H i observations of the spiral galaxy NGC 895, which was previously thought to be isolated. High-sensitivity H i observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms and the two newly discovered H i companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_J022138.1-052631, which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC 895 is an actively star-forming galaxy with a SFR of 1.75 ± 0.09[M⊙/yr], a value typical for high-stellar mass galaxies on the star-forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC 895, and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both H i and optical to reveal a more complete picture of galaxy environments

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    The SARAO MeerKAT 1.3 GHz Galactic Plane Survey

    Get PDF
    We present the SARAO MeerKAT Galactic Plane Survey (SMGPS), a 1.3 GHz continuum survey of almost half of the Galactic Plane (251○ ≤l ≤ 358○ and 2○ ≤l ≤ 61○ at |b| ≤ 1 5). SMGPS is the largest, most sensitive and highest angular resolution 1 GHz survey of the Plane yet carried out, with an angular resolution of 8″ and a broadband RMS sensitivity of ∼10–20 μJy beam−1. Here we describe the first publicly available data release from SMGPS which comprises data cubes of frequency-resolved images over 908–1656 MHz, power law fits to the images, and broadband zeroth moment integrated intensity images. A thorough assessment of the data quality and guidance for future usage of the data products are given. Finally, we discuss the tremendous potential of SMGPS by showcasing highlights of the Galactic and extragalactic science that it permits. These highlights include the discovery of a new population of non-thermal radio filaments; identification of new candidate supernova remnants, pulsar wind nebulae and planetary nebulae; improved radio/mid-IR classification of rare Luminous Blue Variables and discovery of associated extended radio nebulae; new radio stars identified by Bayesian cross-matching techniques; the realisation that many of the largest radio-quiet WISE H II region candidates are not true H II regions; and a large sample of previously undiscovered background H I galaxies in the Zone of Avoidance

    Pebble bed: reflector treatment and pressure velocity coupling

    No full text
    In this report, we describe some models and numerical methods used to simulate the flow and temperature in a pebble bed modular nuclear reactor. The reactor core is filled with around 450000 spheres containing low enriched uranium and helium is forced through these hot pebbles to cool the system down. The group first investigated the flow model in the pebbles. Numerical aspects were then considered to tackle difficulties encountered with the flow simulation and the temperature inside the pebbles. Numerical schemes are presented that can significantly improve the accuracy of the computed results

    Effects of hydrogen, oxygen, and argon annealing on the electrical properties of ZnO and ZnO devices studied by current-voltage, deep level transient spectroscopy, and Laplace DLTS

    No full text
    Effects of annealing ZnO in hydrogen, oxygen, and argon have been investigated using deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS) measurements. Current-voltage (IV) measurements indicate a decrease in zero–bias barrier height for all the annealed samples. Conventional DLTS measurements reveal the presence of three prominent peaks in the un-annealed and annealed samples. A new peak with an activation enthalpy of 0.60 eV has been observed in the H2 annealed samples, while an estimated energy level of 0.67 eV has been observed in Ar annealed samples. O2 annealing does not introduce new peaks but causes a decrease in the concentration of the E3 peak and an increase in concentration of the E1 peak. The concentrations of all the intrinsic defects have decreased after H2 and Ar annealing; with Ar annealing giving peaks with the lowest concentrations. The E2 peak anneals out after annealing ZnO in Ar and H2 at 300 C. From the annealing behaviour of E3, we have attributed to transition metal ion related defects, while E4 has been explained as a defect, whose formation favours oxygen deficient conditions. Laplace DLTS has successfully been employed to resolve the closely spaced energy levels in the E4 peak, splitting it into three peaks with energy levels, 0.68 eV, 0.58 eV, and 0.50 eV below the minimum of the conduction band for the Ar annealed sample.We would like to thank the South African National Research Foundation (NRF) for financial support. The Laplace DLTS software and hardware used in the research was kindly provided by A. R. Peaker (Centre for electronic Materials Devices and Nanostructures, University of Manchester) and L. Dobaczewski (Institute of Physics, Polish Academy of Sciences).http://jap.aip.org/am201
    corecore