64 research outputs found
Recommended from our members
CIA Study: âConsequences to the US of Communist Domination of Mainland Southeast Asia,â October 13, 1950
Histor
Recommended from our members
Meso-scale controlled motion for a microfluidic drop ejector.
The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensions above a target was developed
Blazars in the Fermi Era: The OVRO 40-m Telescope Monitoring Program
The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope
provides an unprecedented opportunity to study gamma-ray blazars. To capitalize
on this opportunity, beginning in late 2007, about a year before the start of
LAT science operations, we began a large-scale, fast-cadence 15 GHz radio
monitoring program with the 40-m telescope at the Owens Valley Radio
Observatory (OVRO). This program began with the 1158 northern (declination>-20
deg) sources from the Candidate Gamma-ray Blazar Survey (CGRaBS) and now
encompasses over 1500 sources, each observed twice per week with a ~4 mJy
(minimum) and 3% (typical) uncertainty. Here, we describe this monitoring
program and our methods, and present radio light curves from the first two
years (2008 and 2009). As a first application, we combine these data with a
novel measure of light curve variability amplitude, the intrinsic modulation
index, through a likelihood analysis to examine the variability properties of
subpopulations of our sample. We demonstrate that, with high significance
(7-sigma), gamma-ray-loud blazars detected by the LAT during its first 11
months of operation vary with about a factor of two greater amplitude than do
the gamma-ray-quiet blazars in our sample. We also find a significant (3-sigma)
difference between variability amplitude in BL Lacertae objects and
flat-spectrum radio quasars (FSRQs), with the former exhibiting larger
variability amplitudes. Finally, low-redshift (z<1) FSRQs are found to vary
more strongly than high-redshift FSRQs, with 3-sigma significance. These
findings represent an important step toward understanding why some blazars emit
gamma-rays while others, with apparently similar properties, remain silent.Comment: 23 pages, 24 figures. Submitted to ApJ
Is oxidative damage the fundamental pathogenic mechanism of Alzheimerâs and other neurodegenerative diseases?
In less than a decade, beginning with the demonstration by Floyd, Stadtman, Markesbery et al. [1] of increased reactive carbonyls in the brains of patients with Alzheimerâs disease (AD), oxidative damage has been established as a feature of the disease. Here, we review the types of oxidative damage seen in AD, sites involved, possible origin, relationship to lesions, and compensatory changes, and we also consider other neurodegenerative diseases where oxidative stress has been implicated. Although much data remain to be collected, the broad spectrum of changes found in AD are only seen, albeit to a lesser extent, in normal aging with other neurodegenerative diseases showing distinct spectrums of change.Work in the authorsâ laboratories is supported by funding from the National Institutes of Health (NS38648, AG19356, AG14249) and the Alzheimerâs Association (IIRG-98-136, ZEN-99-1789, IIRG-00-2163-Stephanie B. Overstreet Scholars, IIRG-98-140, TLL-99-1872).Peer reviewe
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (Pâ<â0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease
We identified rare coding variants associated with Alzheimerâs disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1Ă10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5Ă10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38Ă10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56Ă10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55Ă10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
- âŠ