42 research outputs found

    PDGFRA defines the mesenchymal stem cell Kaposi's sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment

    Get PDF
    Kaposi’s sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.Fil: Naipauer, Julian. Miami University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Rosario, Santas. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Gupta, Sachin. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Premer, Courtney. Miami University; Estados UnidosFil: Méndez Solís, Omayra. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Schlesinger, Mariana. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ponzinibbio, Maria Virginia. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jain, Vaibhav. University of Florida; Estados UnidosFil: Gay, Lauren. University of Florida; Estados UnidosFil: Renne, Rolf. University of Florida; Estados UnidosFil: Chan, Ho Lam. Miami University; Estados UnidosFil: Morey, Lluis. Miami University; Estados UnidosFil: Salyakina, Daria. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Abba, Martín Carlos. Miami University; Estados Unidos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Williams, Sion. Miami University; Estados UnidosFil: Hare, Joshua M.. Miami University; Estados UnidosFil: Goldschmidt Clermont, Pascal. Miami University; Estados UnidosFil: Mesri, Enrique Alfredo. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados Unidos. Miami University; Estados Unido

    Overcoming racism in the twin spheres of conservation science and practice.

    Get PDF
    It is time to acknowledge and overcome conservation's deep-seated systemic racism, which has historically marginalized Black, Indigenous and people of colour (BIPOC) communities and continues to do so. We describe how the mutually reinforcing 'twin spheres' of conservation science and conservation practice perpetuate this systemic racism. We trace how institutional structures in conservation science (e.g. degree programmes, support and advancement opportunities, course syllabuses) can systematically produce conservation graduates with partial and problematic conceptions of conservation's history and contemporary purposes. Many of these graduates go on to work in conservation practice, reproducing conservation's colonial history by contributing to programmes based on outmoded conservation models that disproportionately harm rural BIPOC communities and further restrict access and inclusion for BIPOC conservationists. We provide practical, actionable proposals for breaking vicious cycles of racism in the system of conservation we have with virtuous cycles of inclusion, equality, equity and participation in the system of conservation we want

    PDGFRA defines the mesenchymal stem cell Kaposi's sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment

    Get PDF
    Kaposi’s sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.Centro de Investigaciones Inmunológicas Básicas y Aplicada

    The evolution of self-control

    Get PDF
    This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group led by C.L.N. and B.H. NESCent is supported by the National Science Foundation (NSF) EF-0905606. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791). Y.S. thanks the National Natural Science Foundation of China (Project 31170995) and National Basic Research Program (973 Program: 2010CB833904). E.E.B. thanks the Duke Vertical Integration Program and the Duke Undergraduate Research Support Office. J.M.P. was supported by a Newton International Fellowship from the Royal Society and the British Academy. L.R.S. thanks the James S. McDonnell Foundation for Award 220020242. L.J.N.B. and M.L.P. acknowledge the National Institutes of Mental Health (R01-MH096875 and R01-MH089484), a Duke Institute for Brain Sciences Incubator Award (to M.L.P.), and a Duke Center for Interdisciplinary Decision Sciences Fellowship (to L.J.N.B.). E.V. and E.A. thank the Programma Nazionale per la Ricerca–Consiglio Nazionale delle Ricerche (CNR) Aging Program 2012–2014 for financial support, Roma Capitale–Museo Civico di Zoologia and Fondazione Bioparco for hosting the Istituto di Scienze e Tecnologie della Cognizione–CNR Unit of Cognitive Primatology and Primate Centre, and Massimiliano Bianchi and Simone Catarinacci for assistance with capuchin monkeys. K.F. thanks the Japan Society for the Promotion of Science (JSPS) for Grant-in-Aid for Scientific Research 20220004. F. Aureli thanks the Stages in the Evolution and Development of Sign Use project (Contract 012-984 NESTPathfinder) and the Integrating Cooperation Research Across Europe project (Contract 043318), both funded by the European Community’s Sixth Framework Programme (FP6/2002–2006). F. Amici was supported by Humboldt Research Fellowship for Postdoctoral Researchers (Humboldt ID 1138999). L.F.J. and M.M.D. acknowledge NSF Electrical, Communications, and Cyber Systems Grant 1028319 (to L.F.J.) and an NSF Graduate Fellowship (to M.M.D.). C.H. thanks Grant-in-Aid for JSPS Fellows (10J04395). A.T. thanks Research Fellowships of the JSPS for Young Scientists (21264). F.R. and Z.V. acknowledge Austrian Science Fund (FWF) Project P21244-B17, the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement 311870 (to F.R.), Vienna Science and Technology Fund Project CS11-026 (to Z.V.), and many private sponsors, including Royal Canin for financial support and the Game Park Ernstbrunn for hosting the Wolf Science Center. S.M.R. thanks the Natural Sciences and Engineering Research Council (Canada). J.K.Y. thanks the US Department of Agriculture–Wildlife Services–National Wildlife Research Center. J.F.C. thanks the James S. McDonnell Foundation and Alfred P. Sloan Foundation. E.L.M. and B.H. thank the Duke Lemur Center and acknowledge National Institutes of Health Grant 5 R03 HD070649-02 and NSF Grants DGE-1106401, NSF-BCS-27552, and NSF-BCS-25172. This is Publication 1265 of the Duke Lemur Center.Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.PostprintPeer reviewe

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Heterozygous expression of the oncogenic Pik3ca (H1047R) mutation during murine development results in fatal embryonic and extraembryonic defects

    No full text
    AbstractThe phosphoinositide 3-kinase (PI3K)/AKT signalling pathway regulates many cellular functions including proliferation, migration, survival and protein synthesis. Somatic mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K enzyme, are commonly associated with many human cancers as well as recently being implicated in human overgrowth syndromes. However, it is not clear if such mutations can be inherited through the germline. We have used a novel mouse model with Cre recombinase (Cre)-conditional knock-in of the common H1047R mutation into the endogenous Pik3ca gene. Heterozygous expression of the Pik3caH1047R mutation in the developing mouse embryo resulted in failed ‘turning’ of the embryo and disrupted vascular remodelling within the embryonic and extraembryonic tissues, leading to lethality prior to E10. As vascular endothelial growth factor A (VEGF-A) signalling was disrupted in these embryos, we used Cre under the control of the Tie2 promoter to target the Pik3caH1047R mutation specifically to endothelial cells. In these embryos turning occurred normally but the vascular remodelling defects and embryonic lethality remained, likely as a result of endothelial hyperproliferation. Our results confirm the lethality associated with heterozygous expression of the Pik3caH1047R mutation during development and likely explain the lack of inherited germline PIK3CA mutations in humans

    Heterozygous expression of the oncogenic Pik3ca (H1047R) mutation during murine development results in fatal embryonic and extraembryonic defects

    No full text
    AbstractThe phosphoinositide 3-kinase (PI3K)/AKT signalling pathway regulates many cellular functions including proliferation, migration, survival and protein synthesis. Somatic mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K enzyme, are commonly associated with many human cancers as well as recently being implicated in human overgrowth syndromes. However, it is not clear if such mutations can be inherited through the germline. We have used a novel mouse model with Cre recombinase (Cre)-conditional knock-in of the common H1047R mutation into the endogenous Pik3ca gene. Heterozygous expression of the Pik3caH1047R mutation in the developing mouse embryo resulted in failed ‘turning’ of the embryo and disrupted vascular remodelling within the embryonic and extraembryonic tissues, leading to lethality prior to E10. As vascular endothelial growth factor A (VEGF-A) signalling was disrupted in these embryos, we used Cre under the control of the Tie2 promoter to target the Pik3caH1047R mutation specifically to endothelial cells. In these embryos turning occurred normally but the vascular remodelling defects and embryonic lethality remained, likely as a result of endothelial hyperproliferation. Our results confirm the lethality associated with heterozygous expression of the Pik3caH1047R mutation during development and likely explain the lack of inherited germline PIK3CA mutations in humans
    corecore