262 research outputs found

    The Art of Manufacturing Gold Catalysts

    Get PDF
    Gold has been considered as an active catalyst only when suitable techniques of preparation provided high metal dispersion. A comprehensive survey of the different methods now available for preparing active gold catalysts is reported with particular attention to the role of the supporting material in determining catalyst characteristics

    From Companion Diagnostics to Theranostics:A New Avenue for Alzheimer's Disease?

    Get PDF
    The recent literature signals a growing paradigm shift toward integrating therapeutics and diagnostics rather than developing and deploying them separately. In this gradual move toward more effective and personalized medications, companion diagnostics are an intermediate stage. The next step may be "theranostics", in which single chemical entities are developed to deliver therapy and diagnosis simultaneously. This strategy has been successfully exploited in oncology and is now emerging as a possibility for Alzheimer's disease, where its feasibility has caught the attention of researchers from industry and academia. Medicinal chemists do not yet completely understand the nuances of theranostic action and consequently have not yet developed universally validated strategies for developing theranostic clinical applications against Alzheimer's disease. However, given the emerging indications of the potentially enormous benefits that theranostics may bring to the fight against this devastating disease, further rigorous research is warranted

    On mortality in a two-sex population

    Get PDF

    Base-free Oxidative Esterification of HMF over AuPd/nNiO-TiO2. When Alloying Effects and Metal-support Interactions Converge in Producing Effective and Stable Catalysts

    Get PDF
    Furan-2,5-dimethylcarboxylate (FDMC), along with ethylene glycol (EG), is the key monomer to produce (poly-(ethylene-furanoate) (PEF). Noble metal-based catalysts can convert hydroxymethyl furfural (HMF) to FDMC in methanol through liquid phase catalytic oxidative esterification. In this work, the catalytic performance of Au, Pd and AuPd NPs supported on nanosized nickel oxide (nNiO) have been evaluated under base-free conditions at 90 degrees C and 3 bar O-2. Synergistic effects between Au and Pd imparted high activity and higher yield to FDMC compared to the monometallic counterparts. The role of support was also investigated by depositing AuPd NPs on TiO2 and nNiO-TiO2. Remarkable yield to FDMC (85 % after 8 h) and high stability were observed over AuPd/ nNiO-TiO2 catalyst. This peculiar catalytic behavior could be imputed to the formation of trimetallic AuPdNi particles offering highly active interfacial sites

    Exploring the effect of Au/Pt ratio on glycerol oxidation in presence and absence of a base

    Get PDF
    Bimetallic AuPt nanoparticles with different Au:Pt ratios (molar ratio: 9-1, 8-2, 6-4, 2-8, 1-9) and the corresponding Au and Pt monometallic ones were prepared by sol immobilization and immobilized on commercial TiO2 (P25). The catalytic activity was evaluated in the liquid phase glycerol oxidation in presence and absence of a base (NaOH). It was found that the Au:Pt molar ratio and reaction conditions strongly influence the catalytic performance. In the presence of NaOH, Au-rich catalysts were more active than Pt-rich ones, with the highest activity observed for Au9Pt1/TiO2 (6575 h−1). In absence of a base, a higher content of Pt is needed to produce the most active catalyst (Au6Pt4/TiO2, 301 h−1). In terms of selectivity, in presence of NaOH, Au-rich catalysts showed a high selectivity to C3 products (63–72%) whereas Pt-rich catalysts promote the formation of formic and glycolic acids. The opposite trend was observed in absence of a base with Pt-rich catalysts showing higher selectivity to C3 products (83–88%)
    • …
    corecore