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Abstract

We study a stochastic Nonlinear Schrödinger Equation (NLSE), with additive white

Gaussian noise, by means of the Nonlinear Fourier Transform (NFT). In particular, we

focus on the propagation of discrete eigenvalues along a focusing fiber. Since the stochas-

tic NLSE is not exactly integrable by means of the NFT, then we use a perturbation

approach, where we assume that the signal-to-noise ratio is high. The zeroth-order per-

turbation leads to the deterministic NLSE while the first-order perturbation allows to

describe the statistics of the discrete eigenvalues. This is important to understand the

properties of the channel for recently devised optical transmission techniques, where the

information is encoded in the nonlinear Fourier spectrum.

Keywords: Stochastic Nonlinear Schrödinger Equation, Nonlinear Fourier

Transform, Eigenvalues, Solitons, Perturbation, Fiber Optics.
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1. Introduction.

The Nonlinear Schrödinger Equation (NLSE) governs the evolution of
the complex envelope of signals propagating in optical fibers [1,2]. The
stochastic version of the NLSE also introduces the presence of optical noise,
which is added to non-linear effects of propagation along the fiber. For a
single-mode fiber, the stochastic NLSE in case of anomalous dispersion
(focusing fiber) is

(1)
∂q

∂z
(z, t) =

i

2

∂2q

∂t2
(z, t) + iq(z, t)|q(z, t)|2 + η(z, t)
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where q(z, t) is the complex field envelope, z ∈ R+ is the normalized dis-
tance along the fiber, t ∈ R is time in a frame moving with the group
velocity of the envelope, and η(z, t) is the additive white Gaussian noise
having zero mean [3]:

(2) 〈η(z, t)〉 = 0 .

Let η1 and η2 denote the real and imaginary parts, respectively, of noise:

(3) η(z, t) = η1(z, t) + iη2(z, t) .

We assume

(4) 〈ηi(z, t)ηj(z′, t′)〉 = Dδ(t− t′)δ(z − z′)δij , i, j ∈ {1, 2}

where D > 0 is the spectral density of noise [4]. If the superscript ∗ repre-
sents complex conjugation, we have

(5) 〈η(z, t)η∗(z′, t′)〉 = 〈η∗(z, t)η(z′, t′)〉 = 2Dδ(t− t′)δ(z − z′)

and

(6) 〈η(z, t)η(z′, t′)〉 = 〈η∗(z, t)η∗(z′, t′)〉 = 0 .

The stochastic NLSE (1) models the chromatic dispersion (first term in
the right hand side), the Kerr nonlinearity (second term in the right hand
side) and noise: these are physical aspects which seriously affect system
performance during the propagation of the optical signal [1,2].

Equation (1) has not been proven to be well-posed and is likely ill-
posed [5]. Nevertheless, it is widely used in the physical and engineering
literature [1,6–8]. The problem can be mathematically fixed just with a
cutoff in the spectrum of noise [9]. We do not introduce such a cutoff for
simplicity of tractation.

The optical signal travels along the fiber moving from the transmitter
to the receiver, which is possibly located tens of kilometers away. It implies
the risk of a strong distortion of the signal, making it difficult to decode
the information at the receiver and limiting the transmission rate of the
information itself.

Current optical networks mostly employ methodologies originally devel-
oped for linear channels, and nonlinearity has a detrimental effect on this
kind of transmission. In particular, it has been estimated that the existing
optical fiber technology is going to approach the so called nonlinear trans-
mission limit [10–15]. Linearization approaches to the NLSE can be found
in [2] and references therein and in [16].
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Discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation

Nowadays, part of the scientific community’s efforts is devoted to de-
velop technology for nonlinear and noisy transmissions.

In this work, we approach the issue of nonlinearity by means of the
Nonlinear Fourier Transform (NFT) [6,17], which is a powerful tool to treat
the (by definition) integrable nonlinear partial differential equations, like the
deterministic NLSE [18–21]:

(7)
∂q

∂z
(z, t) =

i

2

∂2q

∂t2
(z, t) + iq(z, t)|q(z, t)|2 .

The NFT maps the optical signal (i.e. the solution of the NLSE) onto a
set of scattering data -constituted by the continuous spectral function, the
discrete eigenvalues and the discrete spectral function associated to the de-
terministic NLSE (7)- which evolve in a trivial manner along the fiber. On
this ground, in [17] it was proposed to encode and transmit the informa-
tion not on the optical signal itself, affected by dispersion and nonlinearity,
but on the discrete eigenvalues associated to it, because they evolve lin-
early. This approach was named eigenvalue communication. The choice of
using the discrete spectrum for encoding the information has been explored
by several authors, see [22–27]. Also the possibility of using the continu-
ous spectrum has been approached, see [8,28–31], often under the name of
nonlinear inverse synthesis.

We focus on the behavior of the discrete eigenvalues during the prop-
agation along the fiber in the presence of additive white Gaussian noise
in order to understand and describe their statistics and, as a direct conse-
quence, the properties of the channel. Following [8,25], we use a perturba-
tion approach. Deterministic perturbation analysis for discrete eigenvalues
can be found in [32–36], but a stochastic distribution of the spectral data is
not faced. In [37] the special case of a noise-free channel with a white Gaus-
sian stochastic input is studied and the distributions of the spectral data
are computed. In many works the statistics for the single-soliton case are
studied, see [38] and references therein. In [25] the perturbation of discrete
eigenvalues is studied in order to simulate their statistics on a computer; the
first-order variation of eigenvalues is obtained and analytical computations
for the statistics are given explicitly for the one-soliton case.

In this work we examine in depth the non deterministic terms because
the comprehension of their statistics lays the foundation for understanding
the influence of noise on the received discrete spectrum. We assume that
the signal-to-noise ratio is high (η small) and we follow the perturbative
approach of [8,25] to study analytically the statistics, in order to determine
the hierarchy of perturbation equations for the propagation of eigenvalues.
The zero-order perturbation leads to the deterministic NLSE (7).
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In Section 2.1 we briefly recall the NFT for the deterministic NLSE (7)
and its notation. In Section 2.2 we recall the evolution equations for the
scattering data, also for small perturbations in the NFT. In Section 3 we
compute the output for discrete eigenvalues at the end of the fiber and
the related statistics. As an example, in Section 3.2 we make explicit com-
putations in the one-soliton case. In Section 4 we summarize some brief
conclusions.

2. Notation.

2.1. Basics on the Nonlinear Fourier Transform.

The Nonlinear Fourier Transform (NFT) is the forward step of the In-
verse Scattering Transform (IST) technique, which was developed in the
1960s and later for solving certain nonlinear partial differential equations
(PDEs), called integrable [18,19,39–42], of the form

(8) qz = K(q)

where q = q(z, t), z ≥ 0, t ∈ R, is sufficiently smooth and vanishing as
t → ±∞ together with all its derivatives, and K is a differential operator
acting on q(z, ·). Numerical approaches to treat the NFT can be seen in
[7,43,44] where fast algorithms are described.

If q is the solution of the deterministic NLSE (7), which is integrable,
one sets the so called Zakharov-Shabat (ZS) system for the evolution of the
scattering data as:

(9)

{
v1t(z, t) + i ζ v1(z, t) = q(z, t)v2(z, t)

v2t(z, t)− i ζ v2(z, t) = −q∗(z, t)v1(z, t)

where t ∈ R is time, z ∈ [0,L] is the distance along a fiber of length L,
v(z, t) = (v1(z, t), v2(z, t)) are the eigenfunctions, ζ ∈ C are the eigenvalues,
and q∗(z, t) is the complex conjugate of q(z, t), that plays the role of a
potential in the ZS system (9). We assume that q satisfies

(10)

∫ +∞

−∞
|q(z, t)|dt <∞

and

(11) q(z, t)→ 0 for |t| → ∞ .

The eigenvalues ζ are generally complex:

(12) ζ = ξ + iµ ∈ C with ξ, µ ∈ R;
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Discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation

when an eigenvalue is real, it is represented by just ξ ∈ R:

(13) ζ = ξ ∈ R .

Let us consider specific eigenfunctions φ, φ, ψ, ψ of the ZS system (9) called
Jost functions (overbar does not mean complex conjugation) with the fol-
lowing asymptotic behavior for |t| → ∞:

(14)

φ(z, t; ξ) =

(
φ1(z, t; ξ)
φ2(z, t; ξ)

)
→
(

e−iξt

0

)
as t→ −∞

φ(z, t; ξ) =

(
φ1(z, t; ξ)

φ2(z, t; ξ)

)
→
(

0
−eiξt

)
as t→ −∞

ψ(z, t; ξ) =

(
ψ1(z, t; ξ)
ψ2(z, t; ξ)

)
→
(

0
eiξt

)
as t→ +∞

ψ(z, t; ξ) =

(
ψ1(z, t; ξ)

ψ2(z, t; ξ)

)
→
(

e−iξt

0

)
as t→ +∞

The right and left solutions are related by the Jost coefficients a, b, a, b

(15)
ψ(z, t; ξ) = −a(ξ, z)φ(z, t; ξ) + b(ξ, z)φ(z, t; ξ)

ψ(z, t; ξ) = a(ξ, z)φ(z, t; ξ) + b(ξ, z)φ(z, t; ξ)

where

(16) a(ξ, z)a(ξ, z) + b(ξ, z)b(ξ, z) = 1.

Functions a, a can be analytically extended (in ξ) into the upper and
lower half complex plane respectively [19]. Therefore, in addition to the
continuous spectrum (ξ ∈ R), there is also the discrete spectrum, that occurs
for ζk ∈ C+ such that

(17) a(ζk, z) = 0 k = 1, 2, . . . , N

(N is finite, see [19]). If ζk ∈ C+ is an eigenvalue, also ζ∗k ∈ C− is a discrete
eigenvalue in the lower half plane, therefore one omits to consider the zeros
of a and limits the study of discrete eigenvalues to the upper half plane.
The Jost functions φ, ψ become linearly dependent [19]:

(18) φ(z, t; ζk) = b(ζk, z)ψ(z, t; ζk) for k = 1, 2, . . . , N.

The asymptotic behavior of the Jost functions for discrete eigenvalues
ζk ∈ C+ is given by

(19)

φ(z, t; ζk) =

(
φ1(z, t; ζk)
φ2(z, t; ζk)

)
→
(

e−iζkt

0

)
as t→ −∞

ψ(z, t; ζk) =

(
ψ1(z, t; ζk)
ψ2(z, t; ζk)

)
→
(

0
eiζkt

)
as t→ +∞
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Definition 2.1. The set of scattering data is given by

(20) S+ := {ρ(ξ), ξ ∈ R} ∪ {ζk ∈ C+, Ck}Nk=1

where

(21) ρ(ξ, z) :=
b(ξ, z)

a(ξ, z)
, for ξ ∈ R,

is called the continuous spectral function, defined on the continuous spec-
trum ξ ∈ R, ζk are the discrete eigenvalues in the upper half plane C+, and

(22) Ck :=
b(ζk, z)

aζ(ζk, z)
, for k = 1, 2, . . . , N,

is called the discrete spectral function.

The NFT maps the nonlinear PDE one aims at resolving into its set of
scattering data.

2.2. Evolution of the scattering data and perturbations.

In order to give the evolution equations for the scattering data, we are
going to use the compact notation of [32].

Definition 2.2. If q(z, t) satisfies an evolution equation

(23) qz = K(q)

with K nonlinear operator acting on q as a function of t, the Kaup operator
I[u, v; ζ] acts on u = (u1, u2), v = (v1, v2) like
(24)

I[u, v; ζ] :=

∫ +∞

−∞
[iqz(z, t)u2(z, t; ζ)v2(z, t; ζ) + iq∗z(z, t)u1(z, t; ζ)v1(z, t; ζ)] dt.

Notice that the operator I is bilinear. With this notation, the evolution of
scattering coefficients a, b and scattering data ρ, ζk is given by [32]

iaz(ζ, z) = I[φ, ψ; ζ],(25)

ibz(ζ, z) = −I[φ, ψ; ζ],(26)

iρz(ξ, z) = − 1

a2(ξ, z)
I[φ, φ; ξ],(27)

i
d

dz
ζk(z) = −CkI[ψ,ψ; ζk], for k = 1, 2, . . . , N ,(28)
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Discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation

where φ, ψ and ψ are Jost functions of the ZS system associated to K
(we omit the complicated evolution of Ck because not useful here). When q
satisfies the deterministic NLSE (7), one uses index 0 for the Kaup operator
I0[u, v; ζ] and the evolution equations simplify to:

iaz(ζ, z) = 0,(29)

ibz(ζ, z) = −2ζ2b(ζ, z),(30)

iρz(ξ, z) = −2ξ2ρ(ξ, z),(31)

i
d

dz
ζk(z) = 0, for k = 1, . . . , N ,(32)

iCk,z(z) = −2ζ2kCk(z), for k = 1, . . . , N .(33)

The evolution is trivial and the number of the discrete eigenvalues, which
are zeros of a, is preserved.

In [32,34] a perturbation theory is developed for q satisfying

(34) qz(z, t) = K0(q) + σK1(q),

with K0 nonlinear operator for an exactly integrable case, like the determin-
istic NLSE (7), K1 operator for the perturbation and σ a small parameter.
Briefly, for the perturbation of the deterministic NLSE (7), one has

(35) I[u, v; ζ] = I0[u, v; ζ] + σI1[u, v; ζ],

where

(36) I1[u, v; ζ] :=∫ +∞

−∞
[iK1(q)u2(z, t; ζ)v2(z, t; ζ) + i[K1(q)]

∗u1(z, t; ζ)v1(z, t; ζ)] dt

should be understood as computed for u, v in the unperturbed problem
(zero-order perturbation), therefore known (full information).

This framework can therefore be used in order to treat the stochastic
NLSE (1) for the propagation of signal along the fiber [8] by interpreting
K1 as the additive noise term.

3. Propagation of discrete eigenvalues.

Following [8,25], we consider a small noise η, compared with the sig-
nal power, and apply the NFT perturbation theory to obtain a stochastic
description of the channel. In [8] the stochastic evolution for the continu-
ous spectral function is studied. We are going to study the evolution for
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the discrete eigenvalues following Kaup’s notation. A similar perturbation
approach to obtain the evolution equation for discrete eigenvalues is given
in [25], where the perturbation of discrete eigenvalues is studied in order
to simulate their statistics on a computer and analytical computations are
given explicitly only for the one-soliton case. By means of the Kaup nota-
tion, we not only solve the evolution equation for discrete eigenvalues, but
we are also able (in principle) to give a complete description of the statistics
of the channel for the multi-solitonic case, corresponding to an arbitrary
number N of eigenvalues in the upper half complex plane.

From (28) we have that the equation for the evolution of the discrete
eigenvalues ζk = ζk(z), for k = 1, 2, . . . , N is therefore given by:

(37) i
d

dz
ζk(z) = −Ck(z)Inoise1 [ψ,ψ; ζk]

where Ck(z) is defined in Equation (22) and, according to (36),

(38) Inoise1 [u, v; ζ] :=∫ +∞

−∞
[iη(z, t)u2(z, t; ζ)v2(z, t; ζ) + iη∗(z, t)u1(z, t; ζ)v1(z, t; ζ)] dt.

Equation (37) can be written more explicitly as

(39)
d

dz
ζk(z) = −Ck(z)

∫ +∞

−∞

[
η(z, t)ψ2

2(z, t; ζk) + η∗(z, t)ψ2
1(z, t; ζk)

]
dt

or, concisely,

(40)
d

dz
ζk(z) = ∆(ζk, z)

where

(41) ∆(ζk, z) := −Ck(z)
∫ +∞

−∞

[
η(z, t)ψ2

2(z, t; ζk) + η∗(z, t)ψ2
1(z, t; ζk)

]
dt.

Note, moreover, that

(42) Ck(z) = Ck(ζk(0), z) =
b(ζ = ζk(0), z)

aζ(ζ = ζk(0), z)
,

since the Jost functions and the Jost coefficients should be understood as
those of the unperturbed problem and are assumed to be known from the
leading order.
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Discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation

Let us compute the statistics of noise ∆(ζk, z) to completely determine
it. The mean is null:

(43) 〈∆(ζk, z)〉 = 0

because 〈η(z, t)〉 = 0, see Equation (2). This implies that

(44)
d

dz
〈ζk(z)〉 = 0

and then, from Equations (40) and (43),

(45) 〈ζk(z)〉 = 〈ζk(0)〉 = ζk(0).

Hence, the mean value of each discrete eigenvalue is constant and equals
its value at z = 0.

The autocorrelations to be evaluated are 〈∆(ζk, z)∆
∗(ζj , z

′)〉 and
〈∆(ζk, z)∆(ζj , z

′)〉 for ζk 6= ζj , z 6= z′ . For the first one, one obtains

〈∆(ζk, z)∆
∗(ζj , z

′)〉 = Ck(z)C
∗
j (z′)×

×
∫ +∞

−∞
dt

∫ +∞

−∞
dt′
[
2Dδ(t− t′)δ(z − z′)ψ2

2(z, t; ζk)ψ
∗2
2 (z′, t′; ζj) +

+2Dδ(t− t′)δ(z − z′)ψ2
1(z, t; ζk)ψ

∗2
1 (z′, t′; ζj)

]
,

where D > 0 is the spectral density of noise, see Equation (4); hence

〈∆(ζk, z)∆
∗(ζj , z

′)〉 = Ck(z)C
∗
j (z′)2Dδ(z − z′)×

×
∫ +∞

−∞

[
ψ2
2(z, t; ζk)ψ

∗2
2 (z′, t; ζj) + ψ2

1(z, t; ζk)ψ
∗2
1 (z′, t; ζj)

]
dt,

and eventually, because of the presence of the term δ(z − z′)

(46)

〈∆(ζk, z)∆
∗(ζj , z

′)〉 = Ck(z)C
∗
j (z)2Dδ(z − z′)×

×
∫ +∞

−∞

[
ψ2
2(z, t; ζk)ψ

∗2
2 (z, t; ζj) + ψ2

1(z, t; ζk)ψ
∗2
1 (z, t; ζj)

]
dt.

Briefly, it is

(47) 〈∆(ζk, z)∆
∗(ζj , z

′)〉 = 2DC(z; ζk, ζj)δ(z − z′)

where

(48) C(z; ζk, ζj) := Ck(z)C
∗
j (z)×

×
∫ +∞

−∞

[
ψ2
2(z, t; ζk)ψ

∗2
2 (z, t; ζj) + ψ2

1(z, t; ζk)ψ
∗2
1 (z, t; ζj)

]
dt.
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Similarly

(49) 〈∆(ζk, z)∆(ζj , z
′)〉 = 2DE(z; ζk, ζj)δ(z − z′)

where

(50) E(z; ζk, ζj) := Ck(z)Cj(z)×

×
∫ +∞

−∞

[
ψ2
2(z, t; ζk)ψ

2
1(z, t; ζj) + ψ2

1(z, t; ζk)ψ
2
2(z, t; ζj)

]
dt

The autocorrelation functions given in Equations (47) and (49) do make
sense, because integrals in Equations (48) and (50) both converge because
of the decay properties of the Jost functions (19). Indeed, the integrands
are continuous functions and they decay exponentially where the interval
of integration goes to infinity. For example we show the convergence of the
integral defining C(z; ζk, ζj) in Equation (48). Consider an arbitrary T > 0.
Then we have:

(51) Ck(z)C
∗
j (z)

∫ −T
2

−∞

[
ψ2
2(z, t; ζk)ψ

∗2
2 (z, t; ζj) + ψ2

1(z, t; ζk)ψ
∗2
1 (z, t; ζj)

]
dt

= Ck(z)C
∗
j (z)b−2(ζk, z)b

∗−2(ζj , z)

∫ −T
2

−∞
e−2i(ζk−ζ

∗
j )tdt+O

(
1

T

)
= −

Ck(z)C
∗
j (z)

b2(ζk, z)b∗2(ζj , z)

1

2i(ζk − ζ∗j )
ei(ζk−ζ

∗
j )T +O

(
1

T

)
where ζk = αk + iβk with βk ∈ R+ and ζj = αj + iβj with βj ∈ R+, then
i(ζk − ζ∗j ) has a negative real part. Similarly, on the right we have:

(52)

Ck(z)C
∗
j (z)

∫ +∞

T
2

[
ψ2
2(z, t; ζk)ψ

∗2
2 (z, t; ζj) + +ψ2

1(z, t; ζk)ψ
∗2
1 (z, t; ζj)

]
dt

= −Ck(z)C∗j (z)
1

2i(ζk − ζ∗j )
ei(ζk−ζ

∗
j )T +O

(
1

T

)
.

The convergence of E(z; ζk, ζj) can be shown easily in a similar way.

3.1. The channel output.

Let now ζk(L) be the channel output, defined as the solution of Eq.(40)
at the receiver located at distance z = L. Equation (40) gives

(53) ζk(z) = ζk(0) +

∫ z

0
∆(ζk(0), z′)dz′
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therefore the channel output is

(54) ζk(L) = ζk(0) +

∫ L
0

∆(ζk(0), z)dz

or shortly

(55) ζk(L) = ζk(0) +N(ζk),

where

(56) N(ζk) :=

∫ L
0

∆(ζk, z)dz .

Let us compute the statistics of N(ζk). The mean is

(57) 〈N(ζk)〉 = 0

because of Equation (43). Then we compute the two autocorrelations
〈N(ζk)N

∗(ζj)〉 and 〈N(ζk)N(ζj)〉 for ζk 6= ζj . The first one is

(58)

〈N(ζk)N
∗(ζj)〉 =

∫ L
0
dz

∫ L
0
dz′ 〈∆(ζk, z)∆

∗(ζj , z
′)〉

=

∫ L
0
dz

∫ L
0
dz′ 2DC(z; ζk, ζj)δ(z − z′)

where we have used Equation (47), and eventually

(59) 〈N(ζk)N
∗(ζj)〉 = 2D

∫ L
0
C(z; ζk, ζj) dz .

Similarly, because of Equation (49), it is

(60)

〈N(ζk)N(ζj)〉 =

∫ L
0
dz

∫ L
0
dz′ 〈∆(ζk, z)∆(ζj , z

′)〉

=

∫ L
0
dz

∫ L
0
dz′ 2DE(z; ζk, ζj)δ(z − z′)

or

(61) 〈N(ζk)N(ζj)〉 = 2D

∫ L
0
E(z; ζk, ζj) dz .

Both the autocorrelations can be therefore computed with the knowledge
of Jost coefficients and Jost functions in the unperturbed case.
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3.2. The one-soliton case.

In this section we test our method for the simplest case to treat, that is
the one-soliton case, where N = 1 and the Jost coefficient b is null for real
eigenvalues ξ. The only discrete eigenvalue in the upper half complex plane
is

(62) ζ1 = α1 + iβ1 with β1 > 0 .

In this case, the explicit expression for the Jost functions are known and
quite simple [32]. In particular, it is

(63) ψ1(z, t; ζ1) = eiζ1t
d∗

1 + |d|2
,

(64) ψ2(z, t; ζ1) = eiζ1t
1

1 + |d|2
,

where

(65) d := − iC1

2β1
e2iζ1t .

Autocorrelations for ∆ become (see Equations from (47) to (50)):

(66) 〈∆(ζ1, z)∆
∗(ζ1, z

′)〉 = 2DC(z; ζ1, ζ1)δ(z − z′)

and

(67) 〈∆(ζ1, z)∆(ζ1, z
′)〉 = 2DE(z; ζ1, ζ1)δ(z − z′),

with

(68) C(z; ζ1, ζ1) := |C1(z)|2
∫ +∞

−∞

[
|ψ2(z, t; ζ1)|4 + |ψ1(z, t; ζ1)|4

]
dt

and

(69) E(z; ζ1, ζ1) := C2
k(z)

∫ +∞

−∞
2ψ2

2(z, t; ζ1)ψ
2
1(z, t; ζ1) dt.

As a consequence, Equation (59) becomes

〈N(ζ1)N
∗(ζ1)〉 = 2D

∫ L
0
C(z; ζ1, ζ1) dz

= 2D

∫ L
0
|C1(z)|2

∫ +∞

−∞

[
|ψ2(z, t; ζ1)|4 + |ψ1(z, t; ζ1)|4

]
dt dz

= 2D

∫ L
0
|C1(z)|2

2β1
3|C1(z)|2

dz
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and therefore

(70) 〈N(ζ1)N
∗(ζ1)〉 =

4

3
DLβ1 .

Similarly, one obtains

〈N(ζ1)N(ζ1)〉 = 2D

∫ L
0
E(z; ζ1, ζ1) dz

= 2D

∫ L
0
C2
1 (z)

∫ +∞

−∞
2ψ2

1(z, t; ζ1)ψ
2
2(z, t; ζ1)dt dz

= 2D

∫ L
0
C2
1 (z)

[
− β1

3C2
1 (z)

]
dz

hence

(71) 〈N(ζ1)N(ζ1)〉 = −2

3
DLβ1 .

The linear growth with the length L of the fiber is consistent with the
analogous linear growth proven in [8] in the case of continuous spectrum.
Furthermore, notice that 〈N(ζ1)N(ζ1)〉 is real and negative, therefore the
real and the imaginary parts of N(ζ1) are uncorrelated and the variance of
the imaginary part is greater than that of the real one, see also [25].

These results correspond to the existing literature on the one-soliton
case, see for example Chapter 5 of [45]. However our method can be in
principle applied to arbitrary multiple soliton case, which will be the subject
of our future work.

4. Conclusions.

The existing networks and infrastructure for telecommunication services
are becoming inadequate because the demand has become increasingly ur-
gent over the years. In the late Seventies, the fiber-optic communications
were introduced leading to great technological progress that allowed to ex-
ponentially increase the data traffic. The Nonlinear Schrödinger Equation
(NLSE) well models the evolution of the complex envelope of signals propa-
gating in optical fibers, and its stochastic version (1) is necessary to account
for the unavoidable presence of noise along the fiber. The strong distortion
of the optical signal, due to the combined dispersive effects and nonlinear
mixing of signal and noise, makes it very difficult to decode the information
at the receiver.

The new paradigm of eigenvalue communication, based on the Nonlinear
Fourier Transform, is aimed to exploit the mathematical integrability of
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NLSE in order to take advantage from nonlinearity, rather than avoiding it.
However, the noise breaks down the perfect integrability of he deterministic
NLSE, and this requires an accurate study of the effects of a noisy data on
the NFT. In this paper we have integrated the existing studies on the effect
of noise on the continuous part of the nonlinear spectrum with an analogous
study on the discrete part. Assuming the signal-to-noise ratio to be high,
we have used a perturbative approach to obtain, at first order, explicit
expressions for the propagated statistics of the discrete eigenvalues along
the fiber. Finally, we have tested our results in the mono-solitonic case, that
is the case of a single eigenvalue in the upper half complex plane.
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