261 research outputs found
Magnetic fluctuations in frustrated Laves hydrides R(Mn_{1-x}Al_{x})_{2}H_{y}
By neutron scattering, we have studied the spin correlations and spin
fluctuations in frustrated Laves hydrides, where magnetic disorder sets in the
topologically frustrated Mn lattice. Below the transition towards short range
magnetic order, static spin clusters coexist with fluctuating and alsmost
uncorrelated spins. The magnetic response shows a complexe lineshape, connected
with the presence of the magnetic inhomogeneities. Its analysis shows the
existence of two different processes, relaxation and local excitations, for the
spin fluctuations below the transition. The paramagnetic fluctuations are
discussed in comparison with classical spin glasses, cluster glasses, and non
Fermi liquid itinerant magnets
Pseudo-ternary LiBH4-LiCl-P2S5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteries
The properties of the mixed system LiBH4 LiCl P2S5 are studied with respect
to all-solid-state batteries. The studied material undergoes an amorphization
upon heating above 601C, accompanied with increased Li+ conductivity beneficial
for battery electrolyte applications. The measured ionic conductivity is 10-3
Scm-1 at room temperature with an activation energy of 0.40(2) eV after
amorphization. Structural analysis and characterization of the material suggest
that BH4 groups and PS4 may belong to the same molecular structure, where Cl
ions interplay to accommodate the structural unit. Thanks to its conductivity,
ductility and electrochemical stability (up to 5 V, Au vs. Li+/Li), this new
electrolyte is successfully tested in battery cells operated with a cathode
material (layered TiS2, theo. capacity 239 mAh g-1) and Li anode resulting in
93% capacity retention (10 cycles) and notable cycling stability under the
current density 12 mA g-1 (0.05C-rate) at 501C. Further advanced
characterisation by means of operando synchrotron X-ray diffraction in
transmission mode contributes explicitly to a better understanding of the
(de)lithiation processes of solid-state battery electrodes operated at moderate
temperatures
Muon spin rotation and relaxation in magnetic materials
A review of the muon spin rotation and relaxation (SR) studies on
magnetic materials published from July 1993 is presented. It covers the
investigation of magnetic phase diagrams, of spin dynamics and the analysis of
the magnetic properties of superconductors. We have chosen to focus on selected
experimental works in these different topics. In addition, a list of published
works is provided.Comment: Review article, 59 pages, LaTeX with IoP macro
Pseudo-ternary LiBHâLiClâPS system as structurally disordered bulk electrolyte for all-solid-state lithium batteries
The properties of the mixed system LiBHâLiClâPS are studied with respect to all-solid-state batteries. The studied material undergoes an amorphization upon heating above 60 °C, accompanied with increased Li conductivity beneficial for battery electrolyte applications. The measured ionic conductivity is âŒ10 S cm at room temperature with an activation energy of 0.40(2) eV after amorphization. Structural analysis and characterization of the material suggest that BH groups and PS4 may belong to the same molecular structure, where Cl ions interplay to accommodate the structural unit. Thanks to its conductivity, ductility and electrochemical stability (up to 5 V, Au vs. Li/Li), this new electrolyte is successfully tested in battery cells operated with a cathode material (layered TiS, theo. capacity 239 mA h g) and Li anode resulting in 93% capacity retention (10 cycles) and notable cycling stability under the current density âŒ12 mA g (0.05C-rate) at 50 °C. Further advanced characterisation by means of operando synchrotron X-ray diffraction in transmission mode contributes explicitly to a better understanding of the (de)lithiation processes of solid-state battery electrodes operated at moderate temperatures
Magnesium based materials for hydrogen based energy storage: Past, present and future
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The âMagnesium groupâ of international experts contributing to IEA Task 32 âHydrogen Based Energy Storageâ recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2, nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented
Metallic and complex hydride-based electrochemical storage of energy
The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration ProgramâH2TCP Task-40, IEA\u27s expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes
Interplay of Linker Functionalization and Hydrogen Adsorption in the MetalâOrganic Framework MIL-101
Functionalization of metalâorganic frameworks results in higher hydrogen uptakes owing to stronger hydrogenâhost interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the âBr ligand increases the secondary building unitâs hydrogen affinity, while the âNH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of âBr and âNH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers
Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters
Three-dimensional lanthanide-organic frameworks formulated as (CH3)2NH2[Ln(pydc)2] · 1/2H2O [Ln3+ ) Eu3+ (1a)
or Er3+ (1b); pydc2- corresponds to the diprotonated residue of 2,5-pyridinedicarboxylic acid (H2pydc)], [Er4(OH)4(pydc)4(H2O)3] ·H2O
(2), and [PrIII
2PrIV
1.25O(OH)3(pydc)3] (3) have been isolated from typical solvothermal (1a and 1b in N,N-dimethylformamide -
DMF) and hydrothermal (2 and 3) syntheses. Materials were characterized in the solid state using single-crystal X-ray diffraction,
thermogravimetric analysis, vibrational spectroscopy (FT-IR and FT-Raman), electron microscopy, and CHN elemental analysis.
While synthesis in DMF promotes the formation of centrosymmetric dimeric units, which act as building blocks in the construction
of anionic â
3{[Ln(pydc)2]-} frameworks having the channels filled by the charge-balancing (CH3)2NH2
+ cations generated in situ by
the solvolysis of DMF, the use of water as the solvent medium promotes clustering of the lanthanide centers: structures of 2 and 3
contain instead tetrameric [Er4(Ό3-OH)4]8+ and hexameric |Pr6(Ό3-O)2(Ό3-OH)6| clusters which act as the building blocks of the networks,
and are bridged by the H2-xpydcx- residues. It is demonstrated that this modular approach is reflected in the topological nature of
the materials inducing 4-, 8-, and 14-connected uninodal networks (the nodes being the centers of gravity of the clusters) with
topologies identical to those of diamond (family 1), and framework types bct (for 2) and bcu-x (for 3), respectively. The
thermogravimetric studies of compound 3 further reveal a significant weight increase between ambient temperature and 450 °C with
this being correlated with the uptake of oxygen from the surrounding environment by the praseodymium oxide inorganic core
- âŠ