26 research outputs found

    The effects of inclination on a two stage pulse tube cryocooler for use with a ground based observatory

    Get PDF
    Abstract Ground-based observatories across a wide range of wavelengths implement cryogenic cooling techniques to increase the sensitivity of instruments and enable low temperature detector technologies. Commercial pulse tube cryocoolers (PTCs) are frequently used to provide 40 K and 4 K stages as thermal shells in scientific instruments. However, PTC operation is dependent on gravity, giving rise to changes in cooling capacity over the operational tilt range of pointed telescopes. We present a study of the performance of a two stage PTC with a cooling capacity of 1.8 W at 4.2 K and 50 W at 45 K (Cryomech PT420-RM) from 0 - 55 ° away from vertical to probe capacity as a function of angle over a set of realistic thermal loading conditions. Our study provides a method to extract temperature estimates given predicted thermal loading conditions across the angular range sampled. We then discuss the design implications for current and future tilted cryogenic systems

    Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease

    Get PDF
    AbstractBackground & Aims: Interleukin (IL)-10 is a cytokine with potent anti-inflammatory properties. We investigated the safety and efficacy of different doses of human recombinant (rhu)IL-10 in patients with Crohn's disease (CD). Methods: A prospective, multicenter, double-blind, placebo-controlled study was conducted in 329 therapy-refractory patients with CD. Clinical improvement was defined by a reduction of the Crohn's Disease Activity Index (CDAI) by 100 points or more and clinical remission by a decrease of the CDAI to Results: Subcutaneous treatment with rhuIL-10 over 28 days induced a fully reversible, dose-dependent decrease in hemoglobin and thrombocyte counts but no clinically significant side effects. No differences in the induction of remission were observed between rhuIL-10 groups (1 μg, 18% [9.6–29.2]; 4 μg, 20% [11.3–32.2]; 8 μg, 20% [11.1–31.8]; 20 μg, 28% [18–40.7]; and placebo, 18% [9.6–29.6]). Clinical improvement was observed in 46% (33.7–59) in the 8-μg/kg rhuIL-10 group in comparison with 27% (17–39.6) in patients taking placebo. Responders to rhuIL-10 showed inhibition of NF-κB p65 activation in contrast to nonresponders. Conclusions: Up to 8 μg/kg of rhuIL-10 was well tolerated. A tendency toward clinical improvement but not remission was observed in the 8-μg/kg dose group. Further studies should delineate which subgroups of patients with CD benefit from rhuIL-10 therapy.GASTROENTEROLOGY 2000;119:1461-147

    Sensitivity of markers of DNA stability and DNA repair activity to folate supplementation in healthy volunteers

    Get PDF
    We have previously reported that supplementation with folic acid (1.2 mg day−1 for 12 week) elicited a significant improvement in the folate status of 61 healthy volunteers. We have examined effects of this supplement on markers of genomic stability. Little is known about the effect of folate supplementation on DNA stability in a cohort, which is not folate deficient. Preintervention, there was a significant inverse association between uracil misincorporation in lymphocyte DNA and red cell folate (P<0.05). In contrast, there were no associations between folate status and DNA strand breakage, global DNA methylation or DNA base excision repair (measured as the capacity of the lymphocyte extract to repair 8-oxoGua ex vivo). Folate supplementation elicited a significant reduction in uracil misincorporation (P<0.05), while DNA strand breakage and global DNA methylation remained unchanged. Increasing folate status significantly decreased the base excision repair capacity in those volunteers with the lowest preintervention folate status (P<0.05). Uracil misincorporation was more sensitive to changes in folate status than other measures of DNA stability and therefore could be considered a specific and functional marker of folate status, which may also be relevant to cancer risk in healthy people

    The Simons Observatory Large Aperture Telescope Receiver

    Get PDF
    The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system

    Serum folate, homocysteine and colorectal cancer risk in women: a nested case–control study

    Get PDF
    Accumulating evidence suggests that folate, which is plentiful in vegetables and fruits, may be protective against colorectal cancer. The authors have studied the relationship of baseline levels of serum folate and homocysteine to the subsequent risk of colorectal cancer in a nested case–control study including 105 cases and 523 matched controls from the New York University Women's Health Study cohort. In univariate analyses, the cases had lower serum folate and higher serum homocysteine levels than controls. The difference was more significant for folate (P < 0.001) than for homocysteine (P = 0.04). After ad'justing for potential confounders, the risk of colorectal cancer in the subjects in the highest quartile of serum folate was half that of those in the lowest quartile (odds ratio, OR = 0.52, 95% confidence interval, CI = 0.27–0.97, P-value for trend = 0.04). The OR for the highest quartile of homocysteine, relative to the lowest quartile, was 1.72 (95% CI = 0.83–3.65, P-value for trend = 0.09). In addition, the risk of colorectal cancer was almost twice as high in subjects with below-median serum folate and above-median total alcohol intake compared with those with above-median serum folate and below-median alcohol consumption (OR = 1.99, 95% CI = 0.92–4.29). The potentially protective effects of folate need to be confirmed in clinical trials. © 1999 Cancer Research Campaig

    Studies of Systematic Uncertainties for Simons Observatory: Polarization Modulator Related Effects

    No full text
    International audienceThe Simons Observatory (SO) will observe the temperature and polarization anisotropies of the cosmic microwave background (CMB) over a wide range of frequencies (27 to 270 GHz) and angular scales by using both small (0.5 m) and large (6 m) aperture telescopes. The SO small aperture telescopes will target degree angular scales where the primordial B-mode polarization signal is expected to peak. The incoming polarization signal of the small aperture telescopes will be modulated by a cryogenic, continuously-rotating half-wave plate (CRHWP) to mitigate systematic effects arising from slowly varying noise and detector pair-differencing. In this paper, we present an assessment of some systematic effects arising from using a CRHWP in the SO small aperture systems. We focus on systematic effects associated with structural properties of the HWP and effects arising when operating a HWP, including the amplitude of the HWP synchronous signal (HWPSS), and I -> P (intensity to polarization) leakage that arises from detector non-linearity in the presence of a large HWPSS. We demonstrate our ability to simulate the impact of the aforementioned systematic effects in the time domain. This important step will inform mitigation strategies and design decisions to ensure that SO will meet its science goals
    corecore