933 research outputs found
Parametric ordering of complex systems
Cellular automata (CA) dynamics are ordered in terms of two global
parameters, computable {\sl a priori} from the description of rules. While one
of them (activity) has been used before, the second one is new; it estimates
the average sensitivity of rules to small configurational changes. For two
well-known families of rules, the Wolfram complexity Classes cluster
satisfactorily. The observed simultaneous occurrence of sharp and smooth
transitions from ordered to disordered dynamics in CA can be explained with the
two-parameter diagram
Eulerian Walkers as a model of Self-Organised Criticality
We propose a new model of self-organized criticality. A particle is dropped
at random on a lattice and moves along directions specified by arrows at each
site. As it moves, it changes the direction of the arrows according to fixed
rules. On closed graphs these walks generate Euler circuits. On open graphs,
the particle eventually leaves the system, and a new particle is then added.
The operators corresponding to particle addition generate an abelian group,
same as the group for the Abelian Sandpile model on the graph. We determine the
critical steady state and some critical exponents exactly, using this
equivalence.Comment: 4 pages, RevTex, 4 figure
Atmospheric Circulation of Eccentric Hot Neptune GJ436b
GJ436b is a unique member of the transiting extrasolar planet population
being one of the smallest and least irradiated and possessing an eccentric
orbit. Because of its size, mass and density, GJ436b could plausibly have an
atmospheric metallicity similar to Neptune (20-60 times solar abundances),
which makes it an ideal target to study the effects of atmospheric metallicity
on dynamics and radiative transfer in an extrasolar planetary atmosphere. We
present three-dimensional atmospheric circulation models that include realistic
non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric
metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show
little day/night temperature variation and strong high-latitude jets. In
contrast, higher metallicity models (30 and 50 times solar) exhibit day/night
temperature variations and a strong equatorial jet. Spectra and light curves
produced from these simulations show strong orbital phase dependencies in the
50 times solar case and negligible variations with orbital phase in the 1 times
solar case. Comparisons between the predicted planet/star flux ratio from these
models and current secondary eclipse measurements support a high metallicity
atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry
at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b,
our models serve to illuminate how metallicity influences the atmospheric
circulation for a broad range of warm extrasolar planets.Comment: 25 pages, 13 figure
Constraints on the Atmospheric Circulation and Variability of the Eccentric Hot Jupiter XO-3b
We report secondary eclipse photometry of the hot Jupiter XO-3b in the
4.5~m band taken with the Infrared Array Camera (IRAC) on the Spitzer
Space Telescope. We measure individual eclipse depths and center of eclipse
times for a total of twelve secondary eclipses. We fit these data
simultaneously with two transits observed in the same band in order to obtain a
global best-fit secondary eclipse depth of and a center of
eclipse phase of . We assess the relative magnitude of
variations in the dayside brightness of the planet by measuring the size of the
residuals during ingress and egress from fitting the combined eclipse light
curve with a uniform disk model and place an upper limit of 0.05. The new
secondary eclipse observations extend the total baseline from one and a half
years to nearly three years, allowing us to place an upper limit on the
periastron precession rate of degrees/day the tightest
constraint to date on the periastron precession rate of a hot Jupiter. We use
the new transit observations to calculate improved estimates for the system
properties, including an updated orbital ephemeris. We also use the large
number of secondary eclipses to obtain the most stringent limits to date on the
orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the
consistency of multiple-epoch Spitzer observations.Comment: 14 pages, 11 figures, published by Ap
Effect of Chaotic Noise on Multistable Systems
In a recent letter [Phys.Rev.Lett. {\bf 30}, 3269 (1995), chao-dyn/9510011],
we reported that a macroscopic chaotic determinism emerges in a multistable
system: the unidirectional motion of a dissipative particle subject to an
apparently symmetric chaotic noise occurs even if the particle is in a
spatially symmetric potential. In this paper, we study the global dynamics of a
dissipative particle by investigating the barrier crossing probability of the
particle between two basins of the multistable potential. We derive
analytically an expression of the barrier crossing probability of the particle
subject to a chaotic noise generated by a general piecewise linear map. We also
show that the obtained analytical barrier crossing probability is applicable to
a chaotic noise generated not only by a piecewise linear map with a uniform
invariant density but also by a non-piecewise linear map with non-uniform
invariant density. We claim, from the viewpoint of the noise induced motion in
a multistable system, that chaotic noise is a first realization of the effect
of {\em dynamical asymmetry} of general noise which induces the symmetry
breaking dynamics.Comment: 14 pages, 9 figures, to appear in Phys.Rev.
3.6 and 4.5 m Phase Curves of the Highly-Irradiated Hot Jupiters WASP-19b and HAT-P-7b
We analyze full-orbit phase curve observations of the transiting hot Jupiters
WASP-19b and HAT-P-7b at 3.6 and 4.5 m obtained using the Spitzer Space
Telescope. For WASP-19b, we measure secondary eclipse depths of and at 3.6 and 4.5 m, which are consistent
with a single blackbody with effective temperature K. The
measured 3.6 and 4.5 m secondary eclipse depths for HAT-P-7b are
and , which are well-described by a
single blackbody with effective temperature K. Comparing the phase
curves to the predictions of one-dimensional and three-dimensional atmospheric
models, we find that WASP-19b's dayside emission is consistent with a model
atmosphere with no dayside thermal inversion and moderately efficient day-night
circulation. We also detect an eastward-shifted hotspot, suggesting the
presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside
emission suggests a dayside thermal inversion and relatively inefficient
day-night circulation; no hotspot shift is detected. For both planets, these
same models do not agree with the measured nightside emission. The
discrepancies in the model-data comparisons for WASP-19b might be explained by
high-altitude silicate clouds on the nightside and/or high atmospheric
metallicity, while the very low 3.6 m nightside planetary brightness for
HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond
albedos of 0 ( at ) and for WASP-19b and
HAT-P-7b, respectively. In the context of other planets with thermal phase
curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of
decreasing day-night heat recirculation with increasing irradiation.Comment: 22 pages, 29 figures, accepted by Ap
Illocutionary harm
A number of philosophers have become interested in the ways that individuals are subject to harm as the performers of illocutionary acts. This paper offers an account of the underlying structure of such harms: I argue that speakers are the subjects of illocutionary harm when there is interference in the entitlement structure of their linguistic activities. This interference comes in two forms: denial and incapacitation. In cases of denial, a speaker is prevented from achieving the outcomes to which they are entitled by their speech. In cases of incapacitation, a speaker’s standing to expect certain outcomes is itself undermined. I also discuss how individual speakers are subject to interference along two dimensions: as exercisers of certain non-linguistic capacities, and as producers of meaningful speech
Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits
Of the over 800 exoplanets detected to date, over half are on non-circular
orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable
stellar heating, which has implications for the planet's atmospheric dynamical
regime. However, little is known about this dynamical regime, and how it may
influence observations. Therefore, we present a systematic study of hot
Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which
couples a three-dimensional general circulation model with a plane-parallel,
two-stream, non-grey radiative transfer model. In our study, we vary the
eccentricity and orbit-average stellar flux over a wide range. We demonstrate
that the eccentric hot Jupiter regime is qualitatively similar to that of
planets on circular orbits; the planets possess a superrotating equatorial jet
and exhibit large day-night temperature variations. We show that these
day-night heating variations induce momentum fluxes equatorward to maintain the
superrotating jet throughout its orbit. As the eccentricity and/or stellar flux
is increased, the superrotating jet strengthens and narrows, due to a smaller
Rossby deformation radius. For a select number of model integrations, we
generate full-orbit lightcurves and find that the timing of transit and
secondary eclipse viewed from Earth with respect to periapse and apoapse can
greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux
can lead or lag secondary eclipse depending on the geometry. For those planets
that have large day-night temperature variations and rapid rotation rates, we
find that the lightcurves exhibit "ringing" as the planet's hottest region
rotates in and out of view from Earth. These results can be used to explain
future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
- …