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In a recent Letter@Phys. Rev. Lett.30, 3269~1995!#, we reported that a macroscopic chaotic determinism
emerges in a multistable system: the unidirectional motion of a dissipative particle subject to an apparently
symmetric chaotic noise occurs even if the particle is in a spatially symmetric potential. In this paper, we study
the global dynamics of a dissipative particle by investigating the barrier crossing probability of the particle
between two basins of the multistable potential. We derive analytically an expression of the barrier crossing
probability of the particle subject to a chaotic noise generated by a general piecewise linear map. We also show
that the obtained analytical barrier crossing probability is applicable to a chaotic noise generated not only by
a piecewise linear map with a uniform invariant density but also by a nonpiecewise linear map with nonuni-
form invariant density. We claim, from the viewpoint of the noise induced motion in a multistable system, that
chaotic noise is a first realization of the effect ofdynamical asymmetryof general noise which induces the
symmetry breaking dynamics.@S1063-651X~96!01209-3#

PACS number~s!: 05.45.1b, 05.40.1j, 87.10.1e

I. INTRODUCTION

Chaotic systems show several unexpected and complex
dynamics. ‘‘Chaotic itinerancy’’@1–4# and ‘‘evolution to
edge of chaos’’@5–8# are good examples. The mysterious
role of chaos in neural networks has also been studied exten-
sively @9–16#. However, the origin of such interesting behav-
iors has not been clarified sufficiently because an important
feature of complex systems, multistability, has not been dis-
cussed explicitly in regard to chaos.

The studies of multistable systems subject to probabilistic
noise have been extensively carried out in the field of
reaction-rate theory, which is analyzed as stochastic pro-
cesses@17#. The theory makes it possible to calculate a bar-
rier crossing probability in multistable systems, in which the
noise may have a simple time correlation. However, this
theory also has difficulty treating dynamical noise~perturba-
tion!, especially for chaotic noise, because the theory is
based on stochastic processes, in which a simple structure of
the time correlation of the noise is necessary for its integra-
bility.

In addition to these backgrounds, some chaotic time series
have been assumed to be too random to retrieve its determin-
istic nature in physical systems, because they may have the
same randomness even as the coin tosses@18#. Therefore the
effect of chaotic noise has not been recognized as an impor-
tant property even for a macroscopic physical system,
whereas the chaotic noise has dynamical asymmetry@19#.

In a recent Letter@20#, we reported that the short-time
correlation of chaotic noise caused by its determinism is un-
expectedly important in understanding the dynamics of mul-

tistable systems with chaotic structures@21#. In this paper,
we detail the analytical derivation of the barrier crossing
probability of the dissipative particle in multistable systems
subject to chaotic noise and show that the analytical result is
applicable to wider classes of chaotic noise.

We also emphasize in this paper that chaotic noise is a
first realization of the effect of dynamical asymmetry of any
noise that induces unidirectional motion of a dissipative par-
ticle in a symmetricpotential. This, to our knowledge, is a
new insight in regard to the discussions on the possible
mechanisms of protein motors by ratchet models@22–25#.

In Sec. II, we describe the system in which we will dis-
cuss the effect of chaotic noise on the dissipative particle in
a periodic potential. In Sec. III we will derive the barrier
crossing probability of the dissipative particle over the po-
tential barrier, where we use two kinds of generalized chaotic
maps for wider application. In Sec. IV, we show that the
present analytical result is applicable both to the chaotic
noise, which is a nonpiecewise linear map, and to the chaotic
noise, which has nonuniform invariant density, by using a
logistic map chaos as an example. In Sec. VI, we summarize
our discussions, where we remark the relation of our result to
ratchet models of protein motors.

II. SYSTEM

In this section, we describe a system where we argue the
effect of chaotic noise on multistable systems. We discuss a
dynamics of a dissipative particle in a periodic potential sub-
ject to chaotic noise. We believe that the present system is a
minimal one, which shows an effect of chaotic noise on a
multistable system clearly.

A dissipative particle in a potentialV and noiseh obeys
the equation

dx

dt
52

]V

]x
1h~ t !, ~1!
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whereh(t) is additive noise. We introduce chaotic noise:
h(t)5( j52`

` h jd(t2 j ), whereh j is a chaotic time series
generated by

hn115 f ~hn!, ~2!

wheref is a chaotic map. The potentialV(x) is any periodic
potential. In this paper, we report mainly the results of our
study using a piecewise linear potential with parity symme-
try: V(x)5h2(h/L)ux@mod(2L)#2Lu for x>0, V(2x)
[V(x), whereL is the half-width of the period of the po-
tential andh is the height of the potential barrier. We con-
sider a system that satisfies the following condition:

0,h/L,uhumax!L. ~3!

In this condition, the dissipative particle can move against
the gradient of the potential in both direction and the particle
staying near the bottom of the potential needs to be driven by
chaotic noise many times to cross the potential barrier. In the
following we study a discretized equation

xn115xn2
]V

]x U
x5xn

1hn ~n50,1,2, . . . !, ~4!

which is approximately obtained by integrating Eq.~1! from
tn to tn115tn11. The choice of the finiteDt[tn11
2tn(51) does not alter the central result as shown in the
following.

We show here that the present system is a sufficient one,
which exhibits an unexpected dynamics under chaotic noise.
We also show that the central result is not altered if the
potential is not piecewise linear. For this purpose, although
this paper is intended to discuss the effect of general chaotic
noise, we briefly summarize the qualitative result of the sym-
metry breaking dynamics by using the tent map chaos
@26,27#, hn115 f (hn)51/222uhnu. The tent map chaos has
a uniform invariant density with parity symmetry of
r(h)51 @for 20.5<x,0.5, otherwiser(h)50# andd cor-
related @28#; these properties are the same as the uniform
random number,r n , ur nu,0.5. The tent map chaos is one of
the most random chaotic sequences and has the same ran-
domness as the coin tosses. Therefore the macroscopically
broken parity dynamics induced by this apparently symmet-

ric chaotic noise had never been realized explicitly before
our discovery, to our knowledge.

As found in Ref.@20#, the chaotic noise generated by this
tent map can induce a broken symmetry dynamics of a dis-
sipative particle even in a symmetric multistable system. It is
easily verified that the qualitative results, namely, the broken
symmetry dynamics, are the same both for a smooth periodic
potential and for a piecewise linear potential~Fig. 1!. If we
replace the piecewise linear potentialV(x) with the sinu-
soidal potential having the same amplitude and the period,
Vs(x)5(h/2)sin@2px/(2L)2p/2#, the direction in which the
particle moves does not change. The quantitative difference
of the velocity as shown in Fig. 1 can be attributed to the
difference of the absolute maximum gradients of the poten-
tials: u]Vs /]xumax5(p/2)u]V0 /]xumax. It can also be veri-
fied that the choice ofDt[tn112tn does not essentially alter
the time evolution of the dissipative particle~Fig. 2!.

III. ANALYTICAL DERIVATION OF BARRIER
CROSSING PROBABILITY

In this section, we argue a barrier crossing probability of
a particle in a periodic potential subject to chaotic noise@29#.
An average velocity of the particle is expressed in terms of
the barrier crossing probabilities:

^v&5 lim
n→`

xn2x0
n

52LH(
i
pi

12(
j
pj

2J , ~5!

wherepi
1 is a barrier crossing probability in a positive di-

rection caused by a processi and pi
2 is that in a negative

direction. As is found later, the average velocity is often
dominated by one barrier crossing probabilityp:
u^v&u;2Lp.

When the slope of the potential is large enough, a particle
is found mostly in the neighborhood of one of the basins of
the potential. Therefore, the particle needs to be forced con-
tinuously by the noise having the coherent values to cross the
barrier. Chaotic noise works effectively for the barrier cross-
ing when the noise stays in the neighborhood of an unstable
fixed point h* . There are two types of chaotic sequences
staying near an unstable fixed point: One is the chaotic se-
quence leaving the unstable fixed point monotonically in its

FIG. 1. Typical time evolution of the two kinds of systems
under a tent map chaos:~1! a smooth periodic potential,
Vs(x)5h/2sin@2px/(2L)2p/2#, and~2! the piecewise linear poten-
tial, where the same amplitude and the period of the potentials are
used:L55 andh50.5.

FIG. 2. Dependence of a difference intervalDt, which is used to
derive Eq.~4! from Eq. ~1! on the evolution of the system, where
L55 andh50.5. Data forDt51, 0.1, and 0.01 are shown.
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stay and the other is the sequence leaving it with oscillation.
First, we discuss the former case, which is relatively simple
to treat.

In this paper, we have restricted ourselves to chaotic noise
in which the two successive events of clustering around an
unstable fixed point are not strongly correlated; in other
words, successive clustering does not occur without a suffi-
cient intermission. However, there exists a case where the
two successive events can be strongly correlated. Bernoulli
shift chaos is the case@20#. We will not discuss the complex
case in this paper. The study is under way.

A. Chaotic sequence monotonically leaving an unstable
fixed point

As shown in Fig. 3, the nearer the injected chaotic noise
h is to the unstable fixed pointh* , the longerh stays in the
neighborhood ofh* . Therefore, we have to calculate first
how near the chaotic noise needs to be injected in the neigh-
borhood of an unstable fixed point for the particle to cross
the barrier.

In the following, we calculate the maximum distanceDc
between an injected chaotic noise and an unstable fixed point
for the barrier crossing. The maximum distanceDc is neces-
sary to obtain the barrier crossing probability for the particle
under chaotic noise. To make the following discussion appli-
cable to wider classes of chaotic maps, we investigate the
effect of chaotic noise generated by a generalized piecewise
linear map, which is characterized by the absolute value of
the slope of the mapL and an unstable fixed pointh* .

In a system that satisfies Eq.~3!, the particle is mostly
found near one of the bottoms of the potential. Therefore we
assume that the particle is at an origin of thex coordinate at
discrete time,n51, namely,x150, when the chaotic noise
starts to drive the particle to cross the potential barrier. We
also assume that the particle crosses the barrier byN (@1)
time steps. The nearer to an unstable fixed point the chaotic
sequencehn is injected, the longer the particle continues to
climb the potential. If the particle moves over a half-width of

the potential,L, within N time steps, we judge that the par-
ticle crosses the potential barrier. In this consideration, we
calculate the maximum distanceDc5uh*2h1u for the bar-
rier crossing due to the effect of an unstable fixed point, as a
function of h* , L, h, and L. Note that the slope of the
potentialuLu.1 because the fixed pointh* is unstable.

From these conditions, we write the following inequality
in which the particle can cross the barrier:

hN>h/L, ~6!

xN11>L, ~7!

where we assume that the sign ofh is plus for simplicity; but
the following result is also valid for negativeh by replacing
it with an absolute value ofh. In such a case, the direction of
the velocity of the particle is reversed.

Let us set

h15h*2D ~D!1!, ~8!

then one finds

hN5h*2LN21D. ~9!

We obtain through Eq.~4!

xN115 (
k51

N

hk2
h

L
~N21!, ~10!

where we use an approximation thatx150. Inserting Eq.~9!
into Eq. ~10! and using Eq.~7!, one obtains

xN115Nh*2
D~12LN!

12L
2
h

L
~N21!>L. ~11!

Inserting Eq.~9! into Eq. ~6!, we get

D<S h*2
h

L DY LN21. ~12!

Equation ~12! gives the maximumN for which the noise
keeps driving the particle upward against the potential as a
function ofh* , D, andh/L:

N<N0[ logLF S h*2
h

L D Y DG11. ~13!

ReplacingN of Eq. ~11! by N0 and approximating 12LN of
Eq. ~11! by 2LN for N@1, we obtain the maximum value
of D for which Eq. ~7! is satisfied, that the particle crosses
the peak and makes the transition:

D<S h*2
h

L DL2@~L21!L21Lh*2Lh#/@~L21!~Lh*2h!#

[Dc~L,h,h* ,L!. ~14!

This expression contains the previous result calculated only
for the tent map@29#, which is directly shown by setting
L52 andh*51/2.

In the following, we clarify in what limit the simple ex-
pression of the maximum distanceDc , which is comparable

FIG. 3. Emergence of short-time correlation~or clustering! of
the chaotic noise near an unstable fixed point~caseA): The chaotic
sequencehn leaves an unstable fixed pointh* of the piecewise
linear map ~solid line! monotonically and the distance between
h* andhn increases exponentially, where the dotted line shows the
line, hn115hn . The strong correlation starts when the noise is
injected in theD neighborhood of the unstable fixed point. The less
the slope of the map,L, the more the sequence stays near the
unstable fixed point.
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to the scaling of the barrier crossing probabilityP shown in
Ref. @20#, is obtained. First, we rewrite the maximum dis-
tanceDc , obtained in Eq.~14!:

Dc5S h*2
h

L DL2a, ~15!

where

a5
L~11~Lh*2Lh!/@~L21!L2!#

h*2h/L
. ~16!

By the following limits, we get

a →
~Lh*2Lh!/@~L21!L2#!1 L

h*2h/L
, ~17!

→
h/~h* L !!1 L

h*
. ~18!

This yields the same scaling expression as the barrier cross-
ing probability in Ref.@20#:

P~L !;~1/L!L/uh* u ~19!

if Dc}P. The first limit in Eq.~17! is valid if the width of the
potential barrier is sufficiently large. The second in Eq.~18!
is valid if the effect of the potential gradient is sufficiently
small.

B. Chaotic sequence leaving an unstable fixed point
with oscillation

In this subsection, we discuss the maximum distanceDc
for the case where the chaotic noise leaves an unstable fixed
point with oscillation~Fig. 4!. In a similar way as Eq.~6! and
Eq. ~7!, we write the inequalities in which the particle can
cross the potential barrier:

uhN2h* u<h*2h/L, ~20!

xN11>L. ~21!

The chaotic noise works to drive the particle against the gra-
dient of the potential up ton5N if Eq. ~20! is satisfied. One

finds that the noise may drive the particle against the poten-
tial, even if Eq. ~20! is not satisfied: This happens when
hN2h*.h*2h/L. However, this ambiguity in the inequal-
ity @Eq. ~20!# does not change the following result ofDc
without a prefactor as shown later@Eqs.~31! and ~32!#.

Let us set

h15h*6D ~D!1!, ~22!

then one finds

hN5h*6~21!N21LN21D. ~23!

We obtain through Eq.~4!

xN115 (
k51

N

hk2
h

L
~N21! ~24!

by settingx150. One obtains from Eq.~23!

K (
k51

N

hkL
6

5Nh* , ~25!

where^ &6 means an average over the sign,6, of h1. By use
of this averaging procedure, Eq.~24! is replaced by

xN115Nh*2
h

L
~N21!. ~26!

Inserting Eq.~26! into Eq. ~21!, one obtains

Nh*2
h

L
~N21!>L. ~27!

Inserting Eq.~23! into Eq. ~20!, we get

N<Nc[ logL

h*2h/L

D
11. ~28!

Equation ~28! gives the maximumN for which the noise
keeps driving the particle upward against the potential as a
function of h* , D, and h/L. ReplacingN of Eq. ~27! by
Nc , we obtain the maximum value ofD for which Eq.~21! is
satisfied, that the particle crosses the peak and makes the
transition:

D<Dc[S h*2
h

L DL2~L2h* !/~h*2h/L !, ~29!

where we used an approximation forD!1.
By the following limits, we get simpler expressions of

Dc such as Eqs.~17! and ~18!:

Dc}L2~L2h* !/~h*2h/L ! →
h* /L!1

L2L/~h*2h/L ! →
h/~h* L !!1

L2L/h* .
~30!

The last expression is the same as that obtained for the cha-
otic noise, which monotonically leaves an unstable fixed
point @Eq. ~18!#.

We note that the main result is not altered even if the
right-hand side of Eq.~20! is replaced by an arbitrary con-
stantA, namely,

FIG. 4. Emergence of short-time correlation of the chaotic noise
~caseB): The chaotic sequencehn leaves an unstable fixed point
h* with oscillating around the unstable fixed point. The strong
correlation starts when the noise is injected in theD neighbor of the
unstable fixed point.

3152 54TSUYOSHI HONDOU AND YASUJI SAWADA



uhN2h* u<A. ~31!

In this case, we obtain

D<Dc[AL2~L2h* !/~h*2h/L !, ~32!

which is the same as the previous expression@Eq. ~29!# with-
out a prefactorA.

C. Barrier crossing probability and Dc

In this subsection we argue the relationship between the
maximum distanceDc and the barrier crossing probability.
First, we restrict ourselves to the chaotic noise generated by
the tent map function for demonstration. This function has
two unstable fixed points,h2* 521/2 andh1* 51/6, the ef-
fect of which corresponds to the case of Figs. 3 and 4, re-
spectively. The former case is discussed here~Fig. 5!. Sup-
pose that the barrier crossing event of the particle starts when
the chaotic noise is injected in theD neighbor of the unstable
fixed pointh* . Then the event occurs only when the chaotic
noise was in an interval,D/L, just before the start of the
barrier crossing as shown in Fig. 5. Thus, the sum of the
invariant density over the interval,D/L, gives the barrier
crossing probability@30#. Therefore, we get the barrier cross-
ing probability of the particle in a negative direction caused
by the effect of the unstable fixed point,h2* , of the tent map
function:

P25Dc /L, ~33!

because the invariant density of the tent map function is
uniform: r(h)51.

The barrier crossing probability in a positive direction
caused byh1* can be obtained in the same way~Fig. 6!.
However, the barrier crossing probability in a positive direc-
tion is much smaller than that in a negative direction because
the amplitude of the unstable fixed point,h1* , in a positive
direction is much smaller than that in a negative direction:
uh2* u@uh1* u. This is immediately confirmed by the expres-

sionP}Dc}L2L/h* @see Eqs.~18! and~30!#. Therefore, the
effect of one unstable fixed point,h2* , dominates the overall
barrier crossing probability of the system with a sufficient
barrier widthL.

The comparison between the analytical result and the nu-
merical one is shown for the noise generated by the tent map
chaos~Fig. 7!. The present theory sufficiently predicts the
exponential decreased rate of the barrier crossing probability
as to the potential widthL for L@uhumax. The disagreement
of the constant factor, especially for the caseh/L50.2, may
be attributed to the ambiguity of the assumption of the initial
condition of the particle:x150. When the chaotic noise is
generated by the tent map, the noise drives the particle by
h0;10.5 in the positive direction just before the coherent
drives caused byh2* 520.5 in a negative direction for the
barrier crossing. The greater the slope of the potential, the
stronger this effect works, because this antidrive effect due to
h0;10.5 needs additional kicks in a negative direction for
the noise to drive the particle, roughly equal to
L/(h*2h/L), similar to in the next subsection.

In general, the invariant density of a chaotic map is not
uniform @26,27#. Thus, a simple analytical expression of the
barrier crossing probability cannot generally be obtained.
Therefore, we derive a formal solution of the barrier crossing
probability. Let there be a setI : I5$hu f (h)PU(h* ;Dc)
andh¹U(h* ;Dc)%, whereU(h* ;D) is theD neighborhood
of an unstable fixed pointh* and f is a chaotic map. Then,
the sum of the invariant density over a setI gives the desired
expression of the barrier crossing probability:

P5E
hPI

dh r~h!, ~34!

wherer(h) is the invariant density of the chaotic map.

FIG. 5. Injection mechanism of chaotic sequence near to the
D neighbor of the unstable fixed pointh* ~caseA). In this case of
the tent map, the slopeL52.

FIG. 6. Injection mechanism of chaotic sequence near to the
D neighbor of the unstable fixed pointh* ~caseB). In this case of
the tent map, the slopeL52.

FIG. 7. Barrier crossing probabilities of the dissipative particle
subject to a tent map chaos, where the slopes of a piecewise linear
potential areh/L50.1 and 0.2. Both numerical and analytical re-
sults are shown.
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If the invariant density of a chaotic map in the regionI is
so smooth that it can be approximated by a constant in the
small region, the scaling form of the barrier crossing prob-
ability P is the same as that ofDc without a prefactor~such
asL21). This explains the coincidence of the scaling forms
betweenDc @Eq. ~18!# and the barrier crossing probability
P @Eq. ~19!#.

D. Intuitive interpretation of barrier crossing probability

The analytical result of the barrier crossing probability is
easily understandable by a physical insight. As mentioned in
the last subsection, the barrier crossing probability and the
critical distanceDc can have the same scaling form for sev-
eral kinds of chaotic noise where an invariant density is so
smooth that it can be approximated by a constant in a small
region I for the injection to the unstable fixed point. We
discuss this case for simplicity.

Then, the scaling form of the barrier crossing probability
as in Eqs.~17! and ~30! is

P}Dc}L2L/~h*2h/L !. ~35!

The factorh*2h/L is a displacement of the particle when
the particle is kicked by one chaotic noise at an unstable
fixed point. Therefore the valueL/(h*2h/L) gives the
number of the kicks necessary for the particle at a basin of
the potential to cross the potential barrier; we used an ap-
proximation where a chaotic noise having almost the same
value as the unstable fixed pointh* during the condition, Eq.
~6! or Eq. ~20! is satisfied. The approximation can be justi-
fied at least for the piecewise linear maps, as found in the
analytical derivation of the barrier crossing probability.

Because the valueL/(h*2h/L) gives the number of nec-
essary kicks by chaotic noise, we can understand the expo-
nential dependence of the barrier crossing probability on the
valueL/(h*2h/L). Suppose that

uh12h* u<Ds , ~36!

which satisfies Eq.~6! or Eq. ~20!, and the particle crosses
the barrier. If the factorL/(h*2h/L) increases by one, the
following inequality for the noise,h8, must be satisfied for
the barrier crossing:

uh182h* u<DsL
21, ~37!

because Eq.~37! is equivalent touh282h* u<Ds , where the
noise continues to drive the particleN times aftern52. Thus
the unit increase ofL/(h*2h/L) decreases the measure of
set I by L21. Therefore, the barrier crossing probability de-
pends exponentially on the valueL/(h*2h/L), with the
baseL when the distribution of the invariant density is suf-
ficiently smooth.

IV. AN APPLICATION TO THE LOGISTIC MAP

In the previous discussions including Ref.@20#, we have
argued only the effect of chaotic noise generated by a piece-
wise linear map with uniform invariant density. Therefore
we consider in this section the validity of the present analyti-
cal results by applying them to the map, which is a nonpiece-

wise linear map and has a nonuniform invariant density. For
this purpose, we use a logistic map@26,27# as a chaotic
noise, because an analytical expression of the invariant den-
sity is available. The chaotic sequence of the logistic map
appears as follows:

hn115 f ~hn!51/224hn
2 . ~38!

The invariant density of the logistic map is
r(h)51/pA(h11/2)(h21/2), @21/2<h,1/2, otherwise
r(h)50].

Because analytical expressions ofDc for the barrier cross-
ing probability were derived only for a piecewise linear map,
we have to make an approximation to obtain the barrier
crossing probability induced by the logistic map. As noted
previously, the clustering event of chaotic noise near an un-
stable fixed point occurs whenhn is injected near the un-
stable fixed point. Therefore, it seems valid to linearize the
logistic map both around an unstable fixed point
(h;20.5) and around the corresponding region (h;0.5) to
be injected near the unstable fixed point. With this proce-
dure, we get the linearized slope of the map:L54 ~see Fig.
8!.

By use of this approximation, we can evaluate the barrier
crossing probability for a non-uniform invariant density
by using Eq. ~34!. The set I of Eq. ~34! is
I5$hu1/22Dc/4<h,1/2%. Therefore, we get an analytical
expression of the barrier crossing probability:

P5E
1/22Dc/4

1/2

dh
1

pA~h11/2!~h21/2!
5
2

p S sin21ADc

4 D ,
~39!

whereDc is given by Eq.~14!.
The theoretical barrier crossing probabilities of the logis-

tic map are shown with the numerically obtained barrier
crossing probabilities~Fig. 9!. The data of the larger slope of
the potential (h/L50.2) agree better with the theoretical pre-
dictions @Eq. ~39!# than that ofh/L50.1. The disagreement
for the smaller slope of the potential may be attributed to the
assumption of the present theory that the particle should start
climbing from x150 when the chaotic sequence is injected
near an unstable fixed point. If the slope of the potential is
small, the particle fluctuates much around one of the bottoms
of the periodic potential. This fluctuation effect caused by
the logistic map may be strong because the invariant density

FIG. 8. A form of a logistic map,hn1150.524hn
2 . Dotted lines

show the linearized slope for approximation of the analytical ap-
proach. The linearized slopeL54.

3154 54TSUYOSHI HONDOU AND YASUJI SAWADA



goes to infinity at both edges of the map,h561/2: this
decreases the validity of the assumption of the present
theory.

V. SUMMARY AND DISCUSSION

We showed in this paper a macroscopic feature of chaotic
dynamics emerging in a multistable system: the effect of
chaotic noise on the multistable system is attributed to its
unstable fixed points, which reminds us of the deterministic
nature of chaos. This feature appears effectively in a multi-
stable system when the slope of the unstable fixed point of
the noise,L, is near the ‘‘edge of chaos,’’ because the local
Lyapunov indexl at the unstable fixed point isl5 lnL @31#.
This is consistent at least with recent literature of neural
networks@16,32#.

The unidirectional motion of the dissipative particle in a
periodic potential has been discussed in relation to the dy-
namics of motor proteins@24,25#. We showed that the uni-
directional motion can be induced by an apparently symmet-
ric chaotic noise even if the particle is in a symmetric
multistable potential. Similar results have recently appeared
with several variations@25# of our first report@29#. The au-
thors of the papers claim that the unidirectional motion can
occur in a symmetric multistable potential if an additive
noise is ‘‘temporally asymmetric.’’ However, the asymmet-
ric effect of the noises they used can be attributed to asym-
metric distribution of the probability density of the noise. In
this sense, the effect of thetemporally asymmetricnoise is
rather static, and thus the effect of ‘‘temporal asymmetry,’’
should be discriminated from that of ‘‘dynamical asymme-
try.’’

Finally, we mention that the present analytical method to
estimate barrier crossing probabilities may be applied to the
escape rate problem induced by other types of time correla-
tion of the fluctuation including an intermittent chaos and
nonchaotic time series: the escape rate is found to be
strongly dependent on thetransient time correlation of the
additive noise@33#.
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