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In a recent LettefPhys. Rev. Lett30, 3269(1995], we reported that a macroscopic chaotic determinism
emerges in a multistable system: the unidirectional motion of a dissipative particle subject to an apparently
symmetric chaotic noise occurs even if the particle is in a spatially symmetric potential. In this paper, we study
the global dynamics of a dissipative particle by investigating the barrier crossing probability of the particle
between two basins of the multistable potential. We derive analytically an expression of the barrier crossing
probability of the particle subject to a chaotic noise generated by a general piecewise linear map. We also show
that the obtained analytical barrier crossing probability is applicable to a chaotic noise generated not only by
a piecewise linear map with a uniform invariant density but also by a nonpiecewise linear map with nonuni-
form invariant density. We claim, from the viewpoint of the noise induced motion in a multistable system, that
chaotic noise is a first realization of the effectdfnamical asymmetrgf general noise which induces the
symmetry breaking dynamickS1063-651%96)01209-3

PACS numbeps): 05.45:+b, 05.40+j, 87.10+e

[. INTRODUCTION tistable systems with chaotic structurdgxl]. In this paper,
we detail the analytical derivation of the barrier crossing
Chaotic systems show several unexpected and complep(obab”iw of the dissipative particle in multistable systems
dynamics. “Chaotic itinerancy”[1-4] and “evolution to  subject to chaotic noise and show that the analytical result is
edge of chaos[5-8] are good examples. The mysterious applicable to wider classes of chaotic noise.
role of chaos in neural networks has also been studied exten- We also emphasize in this paper that chaotic noise is a
sively[9—16]. However, the origin of such interesting behav- first realization of the effect of dynamical asymmetry of any
iors has not been clarified sufficiently because an importarft0ise that induces unidirectional motion of a dissipative par-
feature of complex systems, multistability, has not been disticle in a symmetricpotential. This, to our knowledge, is a
cussed explicitly in regard to chaos. new |ns_|ght in regar_d to the discussions on the possible
The studies of multistable systems subject to probabilisti¢nechanisms of protein motors by ratchet mode®-25.
noise have been extensively carried out in the field of In Sec. Il, we describe the system in which we will dis-
reaction-rate theory, which is analyzed as stochastic procuss 'ghe.effect of'chaotlc noise on the_ dlSSlpatlve partlc!e in
cesse$17]. The theory makes it possible to calculate a bar-2 Periodic potential. In Sec. Ill we will derive the barrier
rier crossing probability in multistable systems, in which the€rossing probability of the dissipative particle over the po-
noise may have a simple time correlation. However, thidential barne_r, where we use two kinds of generalized chaotic
theory also has difficulty treating dynamical noigerturba- ~Maps for wider application. In Sec. IV, we show that the
tion), especially for chaotic noise, because the theory iPresent analytical result is applicable both to the chaotic
based on stochastic processes, in which a simple structure BPiS€, which is a nonpiecewise linear map, and to the chaotic
the time correlation of the noise is necessary for its integral’0ise, which has nonuniform invariant density, by using a
bility. logistic map chaos as an example. In Sec. VI, we summarize
In addition to these backgrounds, some chaotic time serie@Ur discussions, where we remark the relation of our result to
have been assumed to be too random to retrieve its determif@tchet models of protein motors.
istic nature in physical systems, because they may have the
same randomness even as the coin tokgs Therefore the

effect of chaotic noise has not been rec'ognized. as an impor- |n this section, we describe a system where we argue the
tant property even for a macroscopic physical systemeifect of chaotic noise on multistable systems. We discuss a
whereas the chaotic noise has dynamical asymnj&8y dynamics of a dissipative particle in a periodic potential sub-

In a recent Lettef20], we reported that the short-time ject to chaotic noise. We believe that the present system is a
correlation of chaotic noise caused by its determinism is Unminimal one, which shows an effect of chaotic noise on a

expectedly important in understanding the dynamics of mulmultistable system clearly.

A dissipative particle in a potentidl and noisen obeys
. the equation
Present address: Department of Physics, Tohoku University,
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FIG. 1. Typical time evolution of the two kinds of systems

under a tent map chaos(l) a smooth periodic potential, . .
. . L derive Eq.(4) from Eg. (1) on the evolution of the system, where
V¢(X) =h/2siM2mx/(2L)— /2], and(2) the piecewise linear poten- L—5 andh=0.5. Data forAt=1, 0.1, and 0.01 are shown,

tial, where the same amplitude and the period of the potentials aré
used:L=5 andh=0.5.

FIG. 2. Dependence of a difference interdal which is used to

ric chaotic noise had never been realized explicitly before

where %(t) is additive noise. We introduce chaotic noise: Our discovery, to our knowledge.. . _
7(t)==7__,7,6(t—]), where ; is a chaotic time series As found in Ref[20], the chaotic noise generated by this
generated by tent map can induce a broken symmetry dynamics of a dis-
sipative particle even in a symmetric multistable system. It is
Dne1=F(7n), (2) easily verified that the qualitative results, namely, the broken
symmetry dynamics, are the same both for a smooth periodic
wheref is a chaotic map. The potentil(x) is any periodic  potential and for a piecewise linear potentiglg. 1). If we
potential. In this paper, we report mainly the results of ourreplace the piecewise linear potentM(x) with the sinu-
study using a piecewise linear potential with parity symme-soidal potential having the same amplitude and the period,
try: V(X)=h—(h/L)|x[mod(2L)]—L| for x=0, V(—x)  Vx)=(h/2)sif27x/(2L)— /2], the direction in which the
=V(x), whereL is the half-width of the period of the po- particle moves does not change. The quantitative difference
tential andh is the height of the potential barrier. We con- of the velocity as shown in Fig. 1 can be attributed to the

sider a system that satisfies the following condition: difference of the absolute maximum gradients of the poten-
tials: |0Vs/ X|max= (712)| Vo ! 3X|max- It can also be veri-
0<h/L<|7|ma=<L. (3 fied that the choice aht=t,,;—t, does not essentially alter

the time evolution of the d|SS|pat|ve partidlEig. 2).
In this condition, the dissipative particle can move against

the gradient of the potential in both direction and the particle
staying near the bottom of the potential needs to be driven by I1l. ANALYTICAL DERIVATION OF BARRIER
chaotic noise many times to cross the potential barrier. In the CROSSING PROBABILITY

following we study a discretized equation ) i ) ) o
In this section, we argue a barrier crossing probability of

E\Y; a particle in a periodic potential subject to chaotic n¢2&.
Xn+1=Xn == +7, (n=0,12...), (4 An average velocity of the particle is expressed in terms of
X=Xq the barrier crossing probabilities:

which is approximately obtained by integrating Et) from
t, to t,,1=t,+1. The choice of the finiteAt=t, 4 (v)=
—1t,(=1) does not alter the central result as shown in the
following.

We show here that the present system is a sufficient one,
which exhibits an unexpected dynamics under chaotic noisavherep;” is a barrier crossing probability in a positive di-
We also show that the central result is not altered if therection caused by a processand p; is that in a negative
potential is not piecewise linear. For this purpose, althougldirection. As is found later, the average velocity is often
this paper is intended to discuss the effect of general chaotidominated by one barrier crossing probability:
noise, we briefly summarize the qualitative result of the sym{(v)|~2Lp.
metry breaking dynamics by using the tent map chaos When the slope of the potential is large enough, a particle
[26,27], n+1="f(7,)=1/2—2|7,|. The tent map chaos has is found mostly in the neighborhood of one of the basins of
a uniform invariant density with parity symmetry of the potential. Therefore, the particle needs to be forced con-
p(n)=1[for —0.5=x<0.5, otherwisep(7)=0] and s cor-  tinuously by the noise having the coherent values to cross the
related[28]; these properties are the same as the unifornbarrier. Chaotic noise works effectively for the barrier cross-
random numben;,,, |r,|<0.5. The tent map chaos is one of ing when the noise stays in the neighborhood of an unstable
the most random chaotic sequences and has the same rdixed point »*. There are two types of chaotic sequences
domness as the coin tosses. Therefore the macroscopicaliyaying near an unstable fixed point: One is the chaotic se-
broken parity dynamics induced by this apparently symmetguence leaving the unstable fixed point monotonically in its

—2L[E ;" 2 pj‘}, (5

n—oe



54 EFFECT OF CHAOTIC NOISE ON MULTISTABLE SYSTEMS 3151

the potentialL, within N time steps, we judge that the par-
ticle crosses the potential barrier. In this consideration, we
calculate the maximum distande.=|»* — 7,| for the bar-
rier crossing due to the effect of an unstable fixed point, as a
function of »*, A, h, andL. Note that the slope of the
potential| A|>1 because the fixed poinf* is unstable.

From these conditions, we write the following inequality
in which the particle can cross the barrier:

n n+l

nn=hiLl, (6)

0 Tl * T] n
Xn+1=L, (7)

FIG. 3. Emergence of short-time correlatigor clustering of  where we assume that the sigmpfs plus for simplicity; but
the chaotic noise near an unstable fixed poeaseA): The chaotic  the following result is also valid for negative by replacing

sequencer, leaves an unstable fixed point* of the piecewise it with an absolute value of. In such a case, the direction of
linear map (solid line) monotonically and the distance between the velocity of the particle is reversed.

7* and», increases exponentially, where the dotted line shows the | ot ys set

line, »,+1=m,. The strong correlation starts when the noise is

injected in theA neighborhood of the unstable fixed point. The less m=n*—A (A<1), (8)
the slope of the mapA, the more the sequence stays near the

unstable fixed point. then one finds

. . . . . . — __AN-1

stay and the other is the sequence leaving it with oscillation. =7 —ATTRA. ©)
E;rz’té;\t/e discuss the former case, which is relatively 5|mpIeWe obtain through Eq(4)

In this paper, we have restricted ourselves to chaotic noise N h
in which the two ;uccessive events of clustering ar_ound an Xni1= 2 m— —(N—1), (10)
unstable fixed point are not strongly correlated; in other k=1 L
words, successive clustering does not occur without a suffi- o )
cient intermission. However, there exists a case where thWhere we use an approximation that=0. Inserting Eq(9)
two successive events can be strongly correlated. Bernoulifto EQ.(10) and using Eq(7), one obtains
shift chaos is the cag@0]. We will not discuss the complex

naos ' A(1—AN) h
case in this paper. The study is under way. Xns1=N7* — —T— E(N_ 1)=L. (11)
A. Chaotic sequence monotonically leaving an unstable Inserting Eq.(9) into Eq. (6), we get
fixed point
- - . . h
As shown in Fig. 3, the nearer the injected chaotic noise As( n* — —)/ ANTL (12)
7 is to the unstable fixed poing*, the longery stays in the L

neighborhood ofy*. Therefore, we have to calculate first
how near the chaotic noise needs to be injected in the neig
:Jhoerhboaortlflie(;f an unstable fixed point for the particle to CroS§ nction of 7% A, andh/L:

In the following, we calculate the maximum distantg h
between an injected chaotic noise and an unstable fixed point N=<Ngy=log, ( n* _E) / A
for the barrier crossing. The maximum distancgis neces-

sary to obtain the barrier crossing probability for the partiCIeReplacingN of Eq. (1) by N, and approximating + AN of

under chaotic noise. To make the following discussion appli-Eq. (11) by — AN for N>1, we obtain the maximum value
cable to W|der_ clas_ses of chaotic maps, we |_nvest|gate t_h8f A for which Eq.(7) is satisfied, that the particle crosses
effect of chaotic noise generated by a generalized piecewi e peak and makes the transition:

linear map, which is characterized by the absolute value o

hE_quation (12) gives the maximumN for which the noise
keeps driving the particle upward against the potential as a

+1. (13

the slope of the map. and an unstable fixed poini*. h o .

In a system that satisfies E¢B), the particle is mostly AS( T AT [ADEH Ly = ARJIA =D)L 7" ~h)]
found near one of the bottoms of the potential. Therefore we
assume that the particle is at an origin of theoordinate at =A(L,h, 7% ,A). (14)

discrete timen=1, namely,x;=0, when the chaotic noise

starts to drive the particle to cross the potential barrier. WeThis expression contains the previous result calculated only
also assume that the particle crosses the barried If>1)  for the tent map[29], which is directly shown by setting
time steps. The nearer to an unstable fixed point the chaotit =2 and »* =1/2.

sequencey, is injected, the longer the particle continues to  In the following, we clarify in what limit the simple ex-
climb the potential. If the particle moves over a half-width of pression of the maximum distandg , which is comparable
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n finds that the noise may drive the particle against the poten-
n+l tial, even if Eq.(20) is not satisfied: This happens when
nn— 7 > 7* —h/L. However, this ambiguity in the inequal-
ity [Eq. (20)] does not change the following result Af;
without a prefactor as shown latgEgs. (31) and(32)].
Let us set

m=n**A (A<]), (22

then one finds

0 WA " a=nt (DN TIANTIA, 23

FIG. 4. Emergence of short-time correlation of the chaotic noisewe obtain through Eq(4)
(caseB): The chaotic sequencg, leaves an unstable fixed point ‘

7n* with oscillating around the unstable fixed point. The strong N
correlation starts when the noise is injected inAhaeighbor of the XNt 1= E m— —(N—1) (24)
unstable fixed point. k=1 L

to the scaling of the barrier crossing probabilRyshown in by settingx; =0. One obtains from Eq23)
Ref. [20], is obtained. First, we rewrite the maximum dis-

N
tanceA., obtained in Eq(14): LNk
=N7zn*, 25
X kzl 7k 7 (25)
Ac=(77*——)A“, (15 :
L where( ). means an average over the sign,of z;. By use

of this averaging procedure, E(4) is replaced by

where
h
L1+ (Lyp* = Ah)/[(A-1)L?)] Xn+1=N7* — —(N—1). (26)
a= * (16) L
n* —h/L
By the following limits, we get Inserting Eq.(26) into Eq.(21), one obtains
(Ly* —AR/[(A-DLA<1 | h
. N7*——(N-1)=L. (27)
hi(r* L)< | Inserting Eq.(23) into Eq. (20), we get
— F (18 7* —hIL
N=< NCEIogAT+ 1. (28

This yields the same scaling expression as the barrier cross-

ing probability in Ref.[20]: Equation (28) gives the maximunmN for which the noise
keeps driving the particle upward against the potential as a
function of »*, A, and h/L. ReplacingN of Eq. (27) by

N, we obtain the maximum value d&f for which Eq.(21) is
satisfied, that the particle crosses the peak and makes the
transition:

P(L)~(1/A)H/I7"] (19)

if AcocP. The first limitin Eq.(17) is valid if the width of the
potential barrier is sufficiently large. The second in EL)
is valid if the effect of the potential gradient is sufficiently
small. h
ASACE(n*—_)A_(L_U*V(W*_h/L), (29)
B. Chaotic sequence leaving an unstable fixed point L

with oscillation where we used an approximation fr<1.

In this subsection, we discuss the maximum distafige By the following limits, we get simpler expressions of
for the case where the chaotic noise leaves an unstable fixe, such as Eqs(17) and(18):
point with oscillation(Fig. 4). In a similar way as Eq6) and
Eq. (7), we write the inequalities in which the particle can
cross the potential barrier:

¥ IL<1 h/(p*L)<1
AcocAf(Lfn*)/(n*fh/L) N A*L/(ﬂ**h/L) N AfL/n*.

30
| on— 7% | < 7* —hiL, (200  The last expression is the same as that obtained fog th)e cha-
otic noise, which monotonically leaves an unstable fixed
Xns1=L. (21)  point[Eq. (18)].

We note that the main result is not altered even if the
The chaotic noise works to drive the particle against the graright-hand side of Eq(20) is replaced by an arbitrary con-
dient of the potential up ta=N if Eq. (20) is satisfied. One stantA, namely,
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P
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FIG. 5. Injection mechanism of chaotic sequence near to the 2 3 "‘ 5 6 7
A neighbor of the unstable fixed poigt* (caseA). In this case of
the tent map, the slopg=2. L
|7]N_ 7* | <A. (3D FIG. 7. Barrier crossing probabilities of the dissipative particle
subject to a tent map chaos, where the slopes of a piecewise linear
In this case, we obtain potential areh/L=0.1 and 0.2. Both numerical and analytical re-

sults are shown.
A<A=AA~L=7)I0F =L, (32
The barrier crossing probability in a positive direction
which is the same as the previous expres$im (29)] with-  caused byz% can be obtained in the same wéig. 6).

out a prefacto. However, the barrier crossing probability in a positive direc-
tion is much smaller than that in a negative direction because
C. Barrier crossing probability and A, the amplitude of the unstable fixed poinf} , in a positive

. . . . direction is much smaller than that in a negative direction:
In this subsection we argue the relationship between th?n’i|>| 7%|. This is immediately confirmed by the expres-

maximum distance\. and the barrier crossing probability. ' e
First, we restrict ourselves to the chaotic noise generated by/on P*Ac*A [see Eqs(18) f‘”d(30)_]- Therefore, the
the tent map function for demonstration. This function haseffect of one unstable fixed poin” , dominates the overall

two unstable fixed pointsy* = —1/2 and7* =1/6, the ef- barrier crossing probability of the system with a sufficient
fect of which corresponds to the case of Figs. 3 and 4, rebarrier widthL.. ,

spectively. The former case is discussed Heig. 5. Sup- T_he comparison between the_: analytical result and the nu-
pose that the barrier crossing event of the particle starts whef€rical one is shown for the noise generated by the tent map
the chaotic noise is injected in tdeneighbor of the unstable €haos(Fig. 7). The present theory sufficiently predicts the
fixed point7* . Then the event occurs only when the chaoticEXponential decreased rate of the barrier crossing probability
noise was in an intervald/A, just before the start of the @S o the potential width for L>|#|m.. The disagreement
barrier crossing as shown in Fig. 5. Thus, the sum of thef the constant factor, especially for the cége=0.2, may
invariant density over the interval\/A, gives the barrier be attributed to the ambiguity of the assumption of the initial

crossing probability30]. Therefore, we get the barrier cross- condition of the particlex,=0. When the chaotic noise is
ing probability of the particle in a negative direction causeddenerated by the tent map, the noise drives the particle by

by the effect of the unstable fixed poinf* , of the tentmap 7o~ 0.5 in the positive direction just before the coherent
function: drives caused by* =—0.5 in a negative direction for the

barrier crossing. The greater the slope of the potential, the
P_=A./A, (33)  stronger this effect works, because this antidrive effect due to
1o~ + 0.5 needs additional kicks in a negative direction for
because the invariant density of the tent map function ishe noise to drive the particle, roughly equal to
uniform: p(n)=1. L/(n* —h/L), similar to in the next subsection.

In general, the invariant density of a chaotic map is not
uniform [26,27]. Thus, a simple analytical expression of the
barrier crossing probability cannot generally be obtained.
Therefore, we derive a formal solution of the barrier crossing

probability. Let there be a sdt |={7|f(7)eU(7*;A.)
Opme TR A andrz ¢ U(5*;A.)}, whereU(#5*;A) is theA neighborhood
s of an unstable fixed poing* andf is a chaotic map. Then,
the sum of the invariant density over a sefives the desired
expression of the barrier crossing probability:

n+1

S0 AA
AA n
P=| dnp(n), (34)
FIG. 6. Injection mechanism of chaotic sequence near to the el

A neighbor of the unstable fixed poigt (caseB). In this case of
the tent map, the slop&=2. wherep( ) is the invariant density of the chaotic map.
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If the invariant density of a chaotic map in the regiois MNiat
so smooth that it can be approximated by a constant in the

. . ’ . 0.5
small region, the scaling form of the barrier crossing prob-
ability P is the same as that df, without a prefactofsuch
asA 1. This explains the coincidence of the scaling forms
betweenA. [Eqg. (18)] and the barrier crossing probability L 7
P [Eqg. (19)].
D. Intuitive interpretation of barrier crossing probability -0.5 05 0 O.5nn

The analytical result of the barrier crossing probability is
easily understandable by a physical insight. As mentioned in o ) _
the last subsection, the barrier crossing probability and the FIG- 8. Aform of a logistic mapy,,,=0.5—47; . Dotted lines
critical distanceA, can have the same scaling form for sev- show the Ilngarlze_d slope for approximation of the analytical ap-
eral kinds of chaotic noise where an invariant density is s¢0ach- The linearized slopk=4.

smooth that it can be approximated by a constant in a Sma\lllvise linear map and has a nonuniform invariant density. For
region | for the injection to the unstable fixed point. We P Y

discuss this case for simliity. oise, because an analytioal expresson of the invarzant den-
Then, the scaling form of the barrier crossing probability ..~ . ytical exp i
. . sity is available. The chaotic sequence of the logistic map
as in Egs(17) and(30) is )
appears as follows:

—L/(9* —hiL)
PocAoc AL : (35 Mne1=F(mn)=12— 472, (39)

The factor»* —h/L is a displacement of the particle when The

L . £ the  lodisti .
the particle is kicked by one chaotic noise at an unstable( ):llr}\;a&ani l/(zj)e(nslt)ilz)o [_a/g< 0<91|7;|C otrrlr(le?\zisels
fixed point. Therefore the valu&/(#%* —h/L) gives the PR K K ’ =7 '

. : . (n)=0].
number Of. the kicks necessary fqr the parpcle at a basin Because analytical expressionsiqf for the barrier cross-
the potential to cross the potential barrier; we used an ap-

proximation where a chaotic noise having almost the sam&'J probability were derived only for a piecewise linear map,

value as the unstable fixed point during the condition, Eq. we hgive 0 ma!<_e an approximation to _obtam the barrier
(6) or Eq. (20 is satisfied. The approximation can be justi- crossing probability induced by the logistic map. As noted

fied at least for the piecewise linear maps, as found in thgrewously, the clustering event of chaotic noise near an un-

analytical derivation of the barrier crossing probabilit stable fixed point occurs when, is injected near the un-
y * : 9p Y- stable fixed point. Therefore, it seems valid to linearize the
Because the value/( »* —h/L) gives the number of nec-

essary kicks by chaotic noise, we can understand the exp logistic ' map both around an unstable fixed - point

. . . . n~ —0.5) and around the corresponding regiop<(0.5) to
CZIZt:eall/(2(37863ﬂ?C;eSOljgggs%atrrT;}tr crossing probability on th e injected near the unstable fixed point. With this proce-

dure, we get the linearized slope of the map: 4 (see Fig.
|m—n*|=<As, 39 9

By use of this approximation, we can evaluate the barrier

which satisfies Eq(6) or Eq. (20), and the particle crosses crossing probability for a non-uniform invariant de_nsity
the barrier. If the factot/(7* —h/L) increases by one, the PY using Eq. (34. The set | of Eq. (34 is
following inequality for the noises’, must be satisfied for | ={711/2—Ac/4<5<1/2}. Therefore, we get an analytical

the barrier crossing: expression of the barrier crossing probability:
I %< -1 1/2 1 2 A
|771 7*[<SAAT, (37) P:J dy :_(Sinl _C>,
' ' 12-ag4 N (p+12)(p—1/2) T
because Eq37) is equivalent td »,— »*|<Ag, where the (39)

noise continues to drive the partidietimes aftem=2. Thus

the unit increase of/(#7* —h/L) decreases the measure of whereA, is given by Eq.(14).

setl by A 1. Therefore, the barrier crossing probability de-  The theoretical barrier crossing probabilities of the logis-
pends exponentially on the valle/(#* —h/L), with the tic map are shown with the numerically obtained barrier

baseA when the distribution of the invariant density is suf- crossing probabilitiesFig. 9). The data of the larger slope of
ficiently smooth. the potential f/L=0.2) agree better with the theoretical pre-

dictions[Eqg. (39)] than that ofh/L=0.1. The disagreement
for the smaller slope of the potential may be attributed to the
assumption of the present theory that the particle should start
In the previous discussions including RE20], we have climbing from x;=0 when the chaotic sequence is injected
argued only the effect of chaotic noise generated by a piecaiear an unstable fixed point. If the slope of the potential is
wise linear map with uniform invariant density. Therefore small, the particle fluctuates much around one of the bottoms
we consider in this section the validity of the present analyti-of the periodic potential. This fluctuation effect caused by
cal results by applying them to the map, which is a nonpiecethe logistic map may be strong because the invariant density

IV. AN APPLICATION TO THE LOGISTIC MAP
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P The unidirectional motion of the dissipative particle in a
107! : : , , periodic potential has been discussed in relation to the dy-
102t S beory (W03 — 1 namics of motor proteinf24,25. We showed that the uni-
103} _ SimolationWL=0.1) * c!lrectlona}l mot!on can be_ induced by an _apparently symm.et—
10 o Theory®L=0) - ric qhaonc noise even |f the particle is in a symmetric
oS5t : . multistable potential. Similar results have recently appeared
} o6 with several variation$25] of our first report{29]. The au-

7 thors of the papers claim that the unidirectional motion can
18_8 i occur in a symmetric multistable potential if an additive

noise is “temporally asymmetric.” However, the asymmet-
ric effect of the noises they used can be attributed to asym-
metric distribution of the probability density of the noise. In
this sense, the effect of themporally asymmetritioise is

FIG. 9. Barrier crossing probabilities under the logistic maprather static, and thus the effect of “temporal asymmetry,”
chaos, where the slopes of the piecewise linear potentials arshould be discriminated from that of “dynamical asymme-
h/L=0.2 and 0.1. Both numerical and theoretical results are showrtry_”

Finally, we mention that the present analytical method to
goes to infinity at both edges of the map==1/2: this  estimate barrier crossing probabilities may be applied to the
decreases the validity of the assumption of the presenéscape rate problem induced by other types of time correla-
theory. tion of the fluctuation including an intermittent chaos and
nonchaotic time series: the escape rate is found to be
strongly dependent on theansienttime correlation of the

in thi : .additi isd33].
We showed in this paper a macroscopic feature of chaot|(a:l itive noise 33]

dynamics emerging in a multistable system: the effect of
chaotic noise on the multistable system is attributed to its
unstable fixed points, which reminds us of the deterministic
nature of chaos. This feature appears effectively in a multi- The authors would like to thank I. Nishikawa, T. Aoyagi,
stable system when the slope of the unstable fixed point 0. Sasa, K. Sugawara, K. Sekimoto, S. Tasaki, T. Chawanya,
the noise A, is near the “edge of chaos,” because the localY. Hayakawa, and M. Sano for stimulating discussions and
Lyapunov indexx at the unstable fixed point is=InA [31]. helpful comments. This work is supported in part by the
This is consistent at least with recent literature of neurallapanese Grant-in-Aid for Science Research Fund from the
networks[16,32. Ministry of Education, Science and Cultuiido. 07740315

V. SUMMARY AND DISCUSSION
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