148 research outputs found

    Computing Non- Gaussian Maps of the CMB

    Full text link
    We discuss methods to compute maps of the CMB in models featuring active causal sources and in non-Gaussian models ofinflation. We show our large angle results as well as some preliminary results on small angles. We conclude by discussing on-going work.Comment: To appear in the proceedings of the XVth Rencontres de Blois. Added 2 reference

    Re-growth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W

    Full text link
    Previous studies have reported the existence of two counter-rotating stellar disks in the early-type spiral galaxy NGC7217. We have obtained high-resolution optical spectroscopic data (R ~ 9000) with the new fiber-based Integral Field Unit instrument VIRUS-W at the 2.7m telescope of the McDonald Observatory in Texas. Our analysis confirms the existence of two components. However, we find them to be co-rotating. The first component is the more luminous (~ 77% of the total light), has the higher velocity dispersion (~ 170 km/s) and rotates relatively slowly (projected vmaxv_{max} = 50 km/s). The lower luminosity second component, (~ 23% of the total light), has a low velocity dispersion (~ 20 km/s) and rotates quickly (projected vmaxv_{max} = 150 km/s). The difference in the kinematics of the two stellar components allows us to perform a kinematic decomposition and to measure the strengths of their Mg and Fe Lick indices separately. The rotational velocities and dispersions of the less luminous and faster component are very similar to those of the interstellar gas as measured from the [OIII] emission. Morphological evidence of active star formation in this component further suggests that NGC7217 may be in the process of (re)growing a disk inside a more massive and higher dispersion stellar halo. The kinematically cold and regular structure of the gas disk in combination with the central almost dust-free morphology allows us to compare the dynamical mass inside of the central 500pc with predictions from a stellar population analysis. We find agreement between the two if a Kroupa stellar initial mass function is assumed.Comment: accepted for publication by MNRA

    Scattering of a Long Cosmic String by a Rotating Black Hole

    Get PDF
    The scattering of a straight, infinitely long string by a rotating black hole is considered. We assume that a string is moving with velocity v and that initially the string is parallel to the axis of rotation of the black hole. We demonstrate that as a result of scattering, the string is displaced in the direction perpendicular to the velocity by an amount kappa(v,b), where b is the impact parameter. The late-time solution is represented by a kink and anti-kink, propagating in opposite directions at the speed of light, and leaving behind them the string in a new ``phase''. We present the results of the numerical study of the string scattering and their comparison with the weak-field approximation, valid where the impact parameter is large, b/M >> 1, and also with the scattering by a non-rotating black hole which was studied in earlier works.Comment: 27 pages, 14 figures, to be published in Classical and Quantum Gravit

    The interplay between high energy physics and cosmology: an example

    Full text link
    Cosmology and high energy physics are two closely connected areas. In this lecture I present an example of their rich interplay.Comment: Invited talk at the DPU workshop: The density fluctuations in the Universe: Beyond the inflationary paradigm (Dimokritos, Athens 2004) (see http://physics.ntua.gr/dpu/). 8 two column page

    The Revival of Cosmic Strings

    Full text link
    Cosmic strings are one-dimensional topological defects which could have been formed in the early stages of our Universe. They triggered a lot of interest, mainly for their cosmological implications: they could offer an alternative to inflation for the generation of density perturbations. It was shown however that cosmic strings lead to inconsistencies with the measurements of the cosmic microwave background temperature anisotropies. The picture is changed recently. It was shown that, on the one hand, cosmic strings can be generically formed in the framework of supersymmetric grand unified theories and that, on the other hand, cosmic superstrings could play the r\^ole of cosmic strings. There is also some possible observational support. All this lead to a revival of cosmic strings research and this is the topic of my lecture.Comment: 13 pages, Invited Lecture in " Pomeranian Workshop in Fundamental Cosmology" (Poland 2005), to be published in Annalen der Physi

    WMAP constraints on inflationary models with global defects

    Get PDF
    We use the cosmic microwave background angular power spectra to place upper limits on the degree to which global defects may have aided cosmic structure formation. We explore this under the inflationary paradigm, but with the addition of textures resulting from the breaking of a global O(4) symmetry during the early stages of the Universe. As a measure of their contribution, we use the fraction of the temperature power spectrum that is attributed to the defects at a multipole of 10. However, we find a parameter degeneracy enabling a fit to the first-year WMAP data to be made even with a significant defect fraction. This degeneracy involves the baryon fraction and the Hubble constant, plus the normalization and tilt of the primordial power spectrum. Hence, constraints on these cosmological parameters are weakened. Combining the WMAP data with a constraint on the physical baryon fraction from big bang nucleosynthesis calculations and high-redshift deuterium abundance, limits the extent of the degeneracy and gives an upper bound on the defect fraction of 0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio

    Production of topological defects at the end of inflation

    Get PDF
    Hybrid inflation within supersymmetric grand unified theories, as well as inflation through brane collisions within braneworld cosmological models, lead to the formation of one-dimensional defects. Observational data, mainly from the cosmic microwave background temperature anisotropies but also from the gravitational wave background, impose constraints on the free parameters of the models. I review these inflationary models and discuss the constraints from the currently available data.Comment: 9 pages, Invited talk in the Conference "Challenges in Particle Astrophysics" -- 6th Rencontres du Vietnam, Hanoi (Vietnam) 6-12 Aug. 200
    corecore