1,274 research outputs found

    MEMS-Based Communications Systems for Space-Based Applications

    Get PDF
    As user demand for higher capacity and flexibility in communications satellites increases, new ways to cope with the inherent limitations posed by the prohibitive mass and power consumption, needed to satisfy those requirements, are under investigation. Recent studies suggest that while new satellite architectures are necessary to enable multi-user, multi-data rate, multi-location satellite links, these new architectures will inevitably increase power consumption, and in turn, spacecraft mass, to such an extent that their successful implementation will demand novel lightweight/low power hardware approaches. In this paper, following a brief introduction to the fundamentals of communications satellites, we address the impact of micro-electro-mechanical systems (MEMS) technology, in particular micro-electro-mechanical (MEM) switches to mitigate the above mentioned problems and show that low-loss/wide bandwidth MEM switches will go a long way towards enabling higher capacity and flexibility space-based communications systems

    Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1

    Get PDF
    AbstractSpinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear. We have discovered that the 14-3-3 protein, a multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation, and in a Drosophila model of SCA1, both 14-3-3 and Akt modulate neurodegeneration. Our finding that phosphatidylinositol 3-kinase/Akt signaling and 14-3-3 cooperate to modulate the neurotoxicity of ataxin-1 provides insight into SCA1 pathogenesis and identifies potential targets for therapeutic intervention

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Get PDF
    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language corrections; version sent to the printer w few upgrade

    Dynamics of the MRSA Population in a Chilean Hospital: a Phylogenomic Analysis (2000-2016)

    Get PDF
    La diseminación mundial de Staphylococcus aureus resistente a meticilina (SARM) está asociada a la aparición y el establecimiento de clones en zonas geográficas específicas. El clon chileno-cordobés (ChC) (ST5-SCCmecI) ha sido el clon de SARM predominante en Chile desde su primera descripción en 1998, a pesar del informe de otros clones de SARM emergentes en los últimos años. Aquí, caracterizamos la historia evolutiva de MRSA desde 2000 hasta 2016 en un centro de salud terciario chileno utilizando análisis filogenómicos. Secuenciamos 469 aislamientos de SARM recogidos entre 2000 y 2016. Evaluamos las tendencias temporales de los clones circulantes y realizamos una reconstrucción filogenómica para caracterizar la dinámica clonal. Encontramos un aumento significativo en la diversidad y riqueza de tipos de secuencia (STs; Spearman r = 0,8748, P , 0,0001) con un índice de diversidad de Shannon que aumentó de 0,221 en el año 2000 a 1,33 en 2016, y una diversidad efectiva (número de Hill; q = 2) que aumentó de 1,12 a 2,71. El análisis de la tendencia temporal reveló que en el periodo de 2000 a 2003 la mayoría de los aislados (94,2%; n = 98) pertenecían al clon ChC. Sin embargo, desde entonces, la frecuencia del clon ChC ha disminuido con el tiempo, representando el 52% de la colección en el período de 2013 a 2016. Este descenso estuvo acompañado por el aumento de dos linajes emergentes de SARM, ST105-SCCmecII y ST72-SCCmecVI. En conclusión, el clon ChC sigue siendo el linaje MRSA más frecuente, pero este linaje está siendo reemplazado gradualmente por varios clones emergentes, el más importante de los cuales es el clon ST105-SCCmecII. Hasta donde sabemos, éste es el mayor estudio de la dinámica clonal del SARM realizado en Sudamérica. © 2023 Martínez et al.The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCCmecI) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in recent years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary health care center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000 and 2016. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r = 0.8748, P , 0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016, and an effective diversity (Hill number; q = 2) increasing from 1.12 to 2.71. The temporal trend analysis revealed that in the period 2000 to 2003 most of the isolates (94.2%; n = 98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013 to 2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCCmecII and ST72-SCCmecVI. In conclusion, the ChC clone remains the most frequent MRSA lineage, but this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCCmecII. To the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. © 2023 Martínez et al

    Dynamics of the Mrsa Population in a Chilean Hospital: a Phylogenomic analysis (2000-2016)

    Get PDF
    The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCCmecI) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in recent years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary health care center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000 and 2016. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r = 0.8748, P \u3c 0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016, and an effective diversity (Hill number; q = 2) increasing from 1.12 to 2.71. The temporal trend analysis revealed that in the period 2000 to 2003 most of the isolates (94.2%; n = 98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013 to 2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCCmecII and ST72-SCCmecVI. In conclusion, the ChC clone remains the most frequent MRSA lineage, but this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCCmecII. to the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health pathogen that disseminates through the emergence of successful dominant clones in specific geographic regions. Knowledge of the dissemination and molecular epidemiology of MRSA in Latin America is scarce and is largely based on small studies or more limited typing techniques that lack the resolution to represent an accurate description of the genomic landscape. We used whole-genome sequencing to study 469 MRSA isolates collected between 2000 and 2016 in Chile providing the largest and most detailed study of clonal dynamics of MRSA in South America to date. We found a significant increase in the diversity of MRSA clones circulating over the 17-year study period. Additionally, we describe the emergence of two novel clones (ST105-SCCmecII and ST72-SCCmecVI), which have been gradually increasing in frequency over time. Our results drastically improve our understanding of the dissemination and update our knowledge about MRSA in Latin America

    Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells

    Get PDF
    A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response
    • …
    corecore