12 research outputs found

    Nouvelles raisons d’agir des acteurs de la pĂȘche et de l’agriculture

    Get PDF
    Les acteurs de la pĂȘche et de l’agriculture (professionnels, institutions d'enseignement, techniciens, organisations professionnelles et syndicales, politiques et lĂ©gislateurs, chercheurs, consommateurs
) font l'expĂ©rience de l’évolution des techniques et des droits Ă  produire et Ă  prĂ©lever la ressource vivante. Les agriculteurs et les pĂȘcheurs se questionnent sur les raisons de faire leur mĂ©tier, de s’y maintenir et de le transformer par de nouveaux modes de transmission, de dĂ©bat et par de nouvelles solidaritĂ©s. Les auteurs, des chercheurs en sciences sociales et des professionnels des deux filiĂšres, examinent les situations les plus propices au dĂ©veloppement de nouvelles raisons d'agir et de nouveaux savoirs : dĂ©bats sur la gestion des ressources renouvelables, dĂ©cisions relatives au contenu du mĂ©tier et Ă  sa transmission, mutations professionnelles ou encore nouvelle division du travail. Les situations prĂ©sentĂ©es permettent un Ă©clairage contrastĂ© des secteurs de la pĂȘche et de l'agriculture, et plus particuliĂšrement : – de l’évolution des raisons d’agir et des savoirs des professionnels, des scientifiques, des lĂ©gislateurs mais aussi des nouveaux arrivants, notamment dans leur rapport Ă  l’écologie. Comment de nouvelles raisons d’agir et de nouveaux savoirs Ă©mergent-ils des divisions et des conflits ? – des transformations du travail et de la formation professionnelle dans les deux secteurs. Comment les rĂ©fĂ©rentiels de formation et les pratiques didactiques modifient-ils les enjeux cognitifs, environnementaux, Ă©conomiques et sociaux des activitĂ©s de pĂȘche et d’agriculture ? Ces questions majeures intĂ©resseront Ă  la fois les pĂȘcheurs et les agriculteurs, les concepteurs de politiques publiques et les scientifiques

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    Study of the molecular mechanisms governing neuroendocrine secretion : role of the interaction between chromogranin A and phosphatidic acid in the formation and exocytosis of secretory granules

    No full text
    L’exocytose rĂ©gulĂ©e des cellules neuroendocrines est un mĂ©canisme biologique fondamental finement contrĂŽlĂ©, rĂ©gissant la libĂ©ration des hormones dans le milieu extracellulaire suite Ă  la fusion des granules de sĂ©crĂ©tion Ă  cƓur dense (GSCD) avec la membrane plasmique. Ces organites, gĂ©nĂ©rĂ©s par bourgeonnement de la membrane du rĂ©seau trans-golgien (TGN), contiennent des hormones et des neuropeptides ainsi que des glycoprotĂ©ines solubles, les granines, et sont donc des acteurs essentiels de l’homĂ©ostasie cellulaire. Parmi les granines, la chromogranine A (CgA) joue un rĂŽle majeur dans la biogĂ©nĂšse des GSCD mais les mĂ©canismes molĂ©culaires sous-jacents ne sont pas clairement identifiĂ©s. Avant mon arrivĂ©e, mon Ă©quipe d’accueil dĂ©montra que l’expression de la CgA dans des cellules non-endocrines COS7 (dĂ©pourvues de GSCD et donc d’exocytose rĂ©gulĂ©e) induit la formation de vĂ©sicules ayant les caractĂ©ristiques des GSCD et que la dĂ©lĂ©tion des extrĂ©mitĂ©s terminales de la CgA organisĂ©es en hĂ©lice rĂ©duit significativement la formation de ces vĂ©sicules. Les hĂ©lices confĂ©rant aux protĂ©ines la capacitĂ© d’interagir avec les membranes biologiques, nous nous sommes intĂ©ressĂ©s durant ma thĂšse Ă  l’interaction entre la CgA et les phospholipides membranaires. Nous avons montrĂ© tout d’abord que la CgA interagit spĂ©cifiquement avec l’acide phosphatidique (PA), un lipide conique ayant un rĂŽle clĂ© dans la sĂ©crĂ©tion rĂ©gulĂ©e neuroendocrine. Ensuite, Ă  l’aide de la spectromĂ©trie de masse LC-MS/MS, nous avons (i) identifiĂ© les formes de PA prĂ©dominantes (PA (36 : 1) et (40 : 6)) et observĂ© qu’elles sont communes dans les membranes golgiennes et granulaires, et (ii) dĂ©montrĂ© que la CgA interagit avec ces formes de PA incluses dans des modĂšles de membranes artificielles, entraĂźnant la dĂ©formation/le remaniement de la membrane de ces modĂšles. Par ailleurs, une analyse in silico de la sĂ©quence de la CgA a rĂ©vĂ©lĂ© la prĂ©sence d’un domaine de liaison au PA (PABD) au niveau de la rĂ©gion C-terminale. Nous avons alors observĂ© que la dĂ©lĂ©tion de cette rĂ©gion altĂšre significativement la liaison de la CgA aux formes de PA prĂ©alablement identifiĂ©es, ainsi que la formation des GSCD au sein des cellules neuroendocrines. Enfin, l’inhibition gĂ©nĂ©tique ou pharmacologique de la PLD, enzyme responsable de la synthĂšse du PA au sein de la voie de sĂ©crĂ©tion rĂ©gulĂ©e, entraĂźne une diminution significative du nombre de GSCD formĂ©s. Ces travaux montrent pour la premiĂšre fois l’importance de l’interaction CgA/PA dans la courbure de la membrane du TGN et la formation consĂ©cutive des GSCD. Par ailleurs, l’analyse de l’exocytose des GSCD contenant la CgA-GFP Ă  l’aide de la microscopie Ă  ondes Ă©vanescentes (TIRFM) ayant rĂ©vĂ©lĂ© une persistance de fluorescence Ă  la membrane plasmique aprĂšs exocytose, nous avons recherchĂ© la prĂ©sence de la CgA au niveau des sites de fusion des GSCD et l’implication de l‘interaction CgA/PA dans le contrĂŽle de l’exocytose rĂ©gulĂ©e. Nous avons ainsi d’ores et dĂ©jĂ  montrĂ© (i) que la stimulation des cellules chromaffines entraĂźne la prĂ©sence d’une partie des molĂ©cules de CgA au niveau des sites de fusion des GSCD et (ii) que l’inhibition de la synthĂšse du PA produit par la PLD diminue la sĂ©crĂ©tion rĂ©gulĂ©e de CgA et des catĂ©cholamines. L’ensemble de ces donnĂ©es obtenues dans le cadre de ma thĂšse suggĂšre que l’interaction entre la CgA et le PA a un rĂŽle fondamental dans la dynamique des membranes au cours de la biogenĂšse des GSCD, et ainsi dans la sĂ©crĂ©tion des cellules neuroendocrines.Regulated exocytosis of neuroendocrine cells is a finely controlled fundamental biological mechanism governing the release of hormones into the extracellular medium following the fusion of dense-core secretory granules (DCSG) with the plasma membrane. These organelles, generated by budding from the trans-golgian network (TGN) membrane, contain hormones and neuropeptides as well as soluble glycoproteins, granins, and are therefore essential actors of cell homeostasis. Among granins, chromogranin A (CgA) plays a major role in DCSG biogenesis, but the underlying molecular mechanisms are not clearly identified. Previously, my team demonstrated that CgA expression in non-endocrine COS7 cells (devoid of DCSG and therefore of regulated exocytosis) induces the formation of vesicles with DCSG characteristics and that the deletion of CgA -helix terminal regions significantly reduce the formation of these vesicles. Since helices ensure that proteins interact with biological membranes, we were interested in the interaction between CgA and membrane phospholipids during my thesis. We first showed that CgA interacts specifically with phosphatidic acid (PA), a conical lipid with a key role in the regulated neuroendocrine secretion. Then, using LC-MS/MS mass spectrometry, we (i) identified PA predominant forms (PA (36: 1) and (40: 6)) and observed that they are common in Golgi and granular membranes, (ii) demonstrated that CgA interacts with those PA forms inserted in artificial membrane models, leading to the deformation/remodeling of these membrane models. Furthermore, in silico analysis of the CgA sequence revealed the presence of a PA-binding domain (PABD) at the level of its C-terminal region. Then, we observed that the deletion of this region significantly alters CgA binding to PA forms previously identified, as well as the formation of DCSG within neuroendocrine cells. Finally, the genetic or pharmacological inhibition of PLD, the enzyme involved in PA synthesis within the regulated secretory pathway, results in a significant decrease of the DCSG number. This work shows for the first time the importance of CgA/PA interaction in the curvature of the TGN membrane and the resulting DCSG biogenesis. Furthermore, the analysis of the exocytosis of CgA-GFP containing DCSG using Total Internal Reflection Fluorescence Microscopy (TIRFM) showing a persistent fluorescence at the plasma membrane after exocytosis, we looked for the presence of CgA at DCSG fusion sites and the involvement of CgA/PA interaction in the control of regulated exocytosis. Thus, we have already shown (i) that chromaffin cell stimulation leads to the presence of CgA molecules at the level of DCSG fusion sites and (ii) that the inhibition of PA synthesis through PLD decreases the regulated secretion of CgA and catecholamines

    Pu multi-recycling scenarios towards a PWR fleet for a stabilization of spent fuel inventories in France

    No full text
    Nuclear scenario studies are performed to explore the impact of possible evolutions of nuclear fleets. The nuclear fuel cycle simulation tool COSI, developed by CEA, is used to model these dynamic scenarios and to evaluate them with respect to uranium and plutonium management, fuel reprocessing and waste production. In recent years, scenarios have focused on transitions from the current nuclear French fleet to a deployment of SFR. However, the French Multi-annual Energy Planning has recently postponed the deployment of this technology to the second half of the 21st century. Alternative solutions of plutonium management in PWR are investigated to stabilize total inventories of spent nuclear fuels. The MIX concept is based on homogeneous fuel assemblies where fuel rods are composed of plutonium blended with enriched uranium. In this study, a transition from the current French fleet to an EPRℱ fleet is simulated. Two power capacities of the future EPRℱ fleet are considered. A progressive deployment of fuel multi-recycling in the EPRℱ fleet is implemented to enable stabilization of all spent fuels and plutonium inventories. Natural uranium consumption is also minimized thanks to ERU fuel batches in EPRℱ. Results are compared with plutonium and uranium mono-recycling in a PWR fleet

    A new tool for the simulation of different nuclear fleets at equilibrium

    No full text
    Scenario simulations are the main tool for studying the impact of a nuclear reactor fleet on the related fuel cycle facilities. This equilibrium preliminary study aims to present the functionalities of a new tool and to show the wide variety of reactors/cycles/strategies that can be studied in steady state conditions and validated with more details thanks to dynamic code. Different types of scenario simulation tools have been developed at CEA over the years, this study focuses on dynamic and equilibrium codes. Dynamic fuel cycle simulation code models the ingoing and outgoing material flow in all the facilities of a nuclear reactor fleet and their evolutions through the different nuclear processes over a given period of time. Equilibrium fuel cycle simulation code models advanced nuclear fuel cycles in equilibrium conditions, i.e. in conditions which stabilize selected nuclear inventories such as spent nuclear fuel constituents, plutonium or some minor actinides. The principle of this work is to analyze different nuclear reactors (PWR, AMR) and several fuel types (UOX, MOX, ERU, MIX) to simulate advanced nuclear fleet with partial and fully plutonium and uranium multi-recycling strategies at equilibrium. At this first stage, selected results are compared with COSI6 simulations in order to evaluate the precision of this new tool, showing a significant general agreement

    Myosin 1b and F-actin are involved in the control of secretory granule biogenesis

    No full text
    Hormone secretion relies on secretory granules which store hormones in endocrine cells and release them upon cell stimulation. The molecular events leading to hormone sorting and secretory granule formation at the level of the TGN are still elusive. Our proteomic analysis of purified whole secretory granules or secretory granule membranes uncovered their association with the actomyosin components myosin 1b, actin and the actin nucleation complex Arp2/3. We found that myosin 1b controls the formation of secretory granules and the associated regulated secretion in both neuroendocrine cells and chromogranin A-expressing COS7 cells used as a simplified model of induced secretion. We show that F-actin is also involved in secretory granule biogenesis and that myosin 1b cooperates with Arp2/3 to recruit F-actin to the Golgi region where secretory granules bud. These results provide the first evidence that components of the actomyosin complex promote the biogenesis of secretory granules and thereby regulate hormone sorting and secretion.This work was supported by Institut National de la SantĂ© et de la Recherche MĂ©dicale, the University of Rouen Normandy, the Conseil RĂ©gional de Normandie and the MinistĂšre de l’Enseignement SupĂ©rieur et de la RecherchePeer Reviewe

    Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis

    No full text
    International audienceChromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans‐Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA). In accordance, bioinformatic analysis predicted a PA‐binding domain (PABD) in CgA sequence that effectively bound PA (36:1) or PA (40:6) in membrane models. We identified PA (36:1) and PA (40:6) as predominant species in Golgi and granule membranes of secretory cells, and we found that CgA interaction with these PA species promotes artificial membrane deformation and remodeling. Furthermore, we demonstrated that disruption of either CgA PABD or phospholipase D (PLD) activity significantly alters secretory granule formation in secretory cells. Our findings show for the first time the ability of CgA to interact with PLD‐generated PA, which allows membrane remodeling and curvature, key processes necessary to initiate secretory granule budding
    corecore