113 research outputs found

    Wolbachia Induces Male-Specific Mortality in the Mosquito Culex pipiens (LIN Strain)

    Get PDF
    Background: Wolbachia are maternally inherited endosymbionts that infect a diverse range of invertebrates, including insects, arachnids, crustaceans and filarial nematodes. Wolbachia are responsible for causing diverse reproductive alterations in their invertebrate hosts that maximize their transmission to the next generation. Evolutionary theory suggests that due to maternal inheritance, Wolbachia should evolve toward mutualism in infected females, but strict maternal inheritance means there is no corresponding force to select for Wolbachia strains that are mutualistic in males. Methodology/Principal findings: Using cohort life-table analysis, we demonstrate that in the mosquito Culex pipiens (LIN strain), Wolbachia-infected females show no fitness costs due to infection. However, Wolbachia induces up to a 30% reduction in male lifespan. Conclusions/significance: These results indicate that the Wolbachia infection of the Culex pipiens LIN strain is virulent in a sex-specific manner. Under laboratory situations where mosquitoes generally mate at young ages, Wolbachia strains that reduce male survival could evolve by drift because increased mortality in older males is not a significant selective force

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    An Age-Structured Extension to the Vectorial Capacity Model

    Get PDF
    Vectorial capacity and the basic reproductive number (R(0)) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention.Based on survival analysis we derived new equations for vectorial capacity and R(0) that are valid for any pattern of age-dependent (or age-independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies.Accounting for age-dependent vector mortality in estimates of vectorial capacity and R(0) was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R(0) is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R(0) ∼ 1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality patterns, particularly for free ranging vectors in the field

    Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts

    Get PDF
    In this work, we demonstrate that that both human whole skin and freshly isolated skin fibroblasts are productively infected with Dengue virus (DENV). In addition, primary skin fibroblast cultures were established and subsequently infected with DENV-2; we showed in these cells the presence of the viral antigen NS3, and we found productive viral infection by a conventional plaque assay. Of note, the infectivity rate was almost the same in all the primary cultures analyzed from different donors. The skin fibroblasts infected with DENV-2 underwent signaling through both TLR3 and RIG-1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 IRF7, when compared with mock-infected fibroblasts. Our data suggest that fibroblasts might even participate producing mediators involved in innate immunity that activate and contribute to the orchestration of the local innate responses. This work is the first evaluating primary skin fibroblast cultures obtained from different humans, assessing both their susceptibility to DENV infection as well as their ability to produce molecules crucial for innate immunity

    Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso

    Get PDF
    <br>Background: The operational impact of insecticide resistance on the effectiveness of long-lasting insecticide nets (LLINs) and indoor residual spraying (IRS) is poorly understood. One factor which may prolong the effectiveness of these tools in the field is the increase in insecticide susceptibility with mosquito age. In this study, LLINs and IRS were tested against young (three to five days) and old (17-19 days) pyrethroid resistant Anopheles gambiae s.l. from Burkina Faso.</br> <br>Methods: Blood-fed adult Anopheles gambiae s.l. were collected from south-west Burkina Faso and identified to species/form level. Cohorts of the F1 progeny of An. gambiae s.s. S-forms were exposed to deltamethrin (0.05%) at three to five or 17-19 days post-emergence and tested for the frequency of the resistance allele 1014F. Isofemale lines of the M, S- form of An. gambiae s.s. and Anopheles arabiensis were exposed in WHO cone tests to either a) LLINs deployed in households for two years or (b) bendiocarb sprayed walls.</br> <br>Results: Mortality rates in response to deltamethrin (0.05%) increased from levels indicative of strong resistance in three to five day old F1 mosquitoes, to near full susceptibility in the 17-19 day old cohort. On exposure to LLINs sampled from the field, the mortality rate in isofemale lines was higher in older mosquitoes than young (OR = 5.28, CI 95% = 2.81-9.92), although the mortality estimates were affected by the LLIN tested. In general, the LLINs sampled from the field performed poorly in WHO cone bioassays using either laboratory susceptible or field caught mosquito populations. Finally, there was a clear relationship between mortality and age on exposure to bendiocarb-sprayed walls, with older mosquitoes again proving more susceptible (OR = 3.39, CI 95% = 2.35-4.90).</br> <br>Conclusions: Age is a key factor determining the susceptibility of mosquitoes to insecticides, not only in laboratory studies, but in response to field-based vector control interventions. This has important implications for understanding the epidemiological impact of resistance. If mosquitoes old enough to transmit malaria are still being suppressed with available insecticides, is resistance potentially having less of an impact than often assumed? However, the poor performance of LLINs used in this study in Burkina Faso, is a cause for concern and requires urgent investigation.</br&gt

    Modeling Transmission Dynamics and Control of Vector-Borne Neglected Tropical Diseases

    Get PDF
    Neglected tropical diseases affect more than one billion people worldwide. The populations most impacted by such diseases are typically the most resource-limited. Mathematical modeling of disease transmission and cost-effectiveness analyses can play a central role in maximizing the utility of limited resources for neglected tropical diseases. We review the contributions that mathematical modeling has made to optimizing intervention strategies of vector-borne neglected diseases. We propose directions forward in the modeling of these diseases, including integrating new knowledge of vector and pathogen ecology, incorporating evolutionary responses to interventions, and expanding the scope of sensitivity analysis in order to achieve robust results

    Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status

    Get PDF
    Physiological characteristics of insects can influence their susceptibility to fungal infection of which age and nutritional status are among the most important. An understanding of host–pathogen interaction with respect to these physiological characteristics of the host is essential if we are to develop fungal formulations capable of reducing malaria transmission under field conditions. Here, two independent bioassays were conducted to study the effect of age and blood-feeding status on fungal infection and survival of Anopheles gambiae s.s. Giles. Mosquitoes were exposed to 2 × 1010 conidia m−2 of oil-formulated Metarhizium anisopliae ICIPE-30 and of Beauveria bassiana I93-825, respectively, and their survival was monitored daily. Three age groups of mosquitoes were exposed, 2–4, 5–8, and 9–12 days since emergence. Five groups of different feeding status were exposed: non-blood-fed, 3, 12, 36, and 72 h post-blood feeding. Fungal infection reduced the survival of mosquitoes regardless of their age and blood-feeding status. Although older mosquitoes died relatively earlier than younger ones, age did not tend to affect mosquito susceptibility to fungal infection. Non-blood-fed mosquitoes were more susceptible to fungus infection compared to all categories of blood-fed mosquitoes, except for those exposed to B. bassiana 72 h post-blood feeding. In conclusion, formulations of M. anisopliae and B. bassiana can equally affect mosquitoes of different age classes, with them being relatively more susceptible to fungus infection when non-blood-fed

    Parental breeding age effects on descendants' longevity interact over 2 generations in matrilines and patrilines

    Get PDF
    Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does and that breeding age effects can interact over 2 generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grand-parental ages at breeding on descendants' mortality rate and life span in both matrilines and patrilines. These breeding age effects were not modulated by grand-parental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intrapopulation variation in mortality and longevity

    Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior

    Get PDF
    The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans
    corecore