178 research outputs found
The variation in the eating quality of beef from different sexes and breed classes cannot be completely explained by carcass measurements
Delivering beef of consistent quality to the consumer is vital for consumer satisfaction and will help to ensure demand and therefore profitability within the beef industry. In Australia, this is being tackled with Meat Standards Australia (MSA), which uses carcass traits and processing factors to deliver an individual eating quality guarantee to the consumer for 135 different ‘cut by cooking methods’ from each carcass. The carcass traits used in the MSA model, such as ossification score, carcass weight and marbling explain the majority of the differences between breeds and sexes. Therefore, it was expected that the model would predict with eating quality of bulls and dairy breeds with good accuracy. In total, 8128 muscle samples from 482 carcasses from France, Poland, Ireland and Northern Ireland were MSA graded at slaughter then evaluated for tenderness, juiciness, flavour liking and overall liking by untrained consumers, according to MSA protocols. The scores were weighted (0.3, 0.1, 0.3, 0.3) and combined to form a global eating quality (meat quality (MQ4)) score. The carcasses were grouped into one of the three breed categories: beef breeds, dairy breeds and crosses. The difference between the actual and the MSA-predicted MQ4 scores were analysed using a linear mixed effects model including fixed effects for carcass hang method, cook type, muscle type, sex, country, breed category and postmortem ageing period, and random terms for animal identification, consumer country and kill group. Bulls had lower MQ4 scores than steers and females and were predicted less accurately by the MSA model. Beef breeds had lower eating quality scores than dairy breeds and crosses for five out of the 16 muscles tested. Beef breeds were also over predicted in comparison with the cross and dairy breeds for six out of the 16 muscles tested. Therefore, even after accounting for differences in carcass traits, bulls still differ in eating quality when compared with females and steers. Breed also influenced eating quality beyond differences in carcass traits. However, in this case, it was only for certain muscles. This should be taken into account when estimating the eating quality of meat. In addition, the coefficients used by the Australian MSA model for some muscles, marbling score and ultimate pH do not exactly reflect the influence of these factors on eating quality in this data set, and if this system was to be applied to Europe then the coefficients for these muscles and covariates would need further investigation
Consumer assessment, in Ireland and the United Kingdom, of the impact of the method of suspension of carcasses from dairy-origin bulls and steers, on the sensory characteristics of the longissimus muscle
The objective was to compare the assessment of beef produced in Ireland from a 19-month bull or a 24-month steer dairy beef production system by consumers in Ireland (Cork) and the United Kingdom (Belfast and Reading). Carcass sides were suspended by the Achilles tendon or by the pelvic bone and 21-d aged longissimus muscle assessed using Meat Standards Australia protocols. Carcass weight and classification were similar for bulls and steers. Consumers in Belfast and Cork rated aroma liking, tenderness, juiciness, overall liking and the composite meat quality score (MQ4) similarly, but lower (P < 0.05) than consumers in Reading. Consumers in Belfast and Cork rated flavour liking similarly as did consumers in Cork and Reading, but consumers in Reading rated flavour liking higher (P < 0.05) than consumers in Belfast. Muscle from steers had higher scores for aroma liking, flavour liking, overall liking and MQ4 scores than bulls (P < 0.05). On average, pelvic suspension increased (P < 0.05) the scores for aroma liking and flavour liking compared with conventional suspension but increased (P < 0.05) tenderness, juiciness, overall liking and MQ4 scores only in bulls. Consumers in Reading rated striploin from the traditional Achilles tendon-suspended steers similarly to striploin from pelvic-suspended bulls (MQ4 score of 71.8 and 68.2, respectively). Beef from the latter system could replace the traditional steer beef in this market, thereby benefiting the beef producer and the environment
Review: The variability of the eating quality of beef can be reduced by predicting consumer satisfaction
Publication history: Accepted - 22 February 2018; Published online - 2 April 2018The Meat Standards Australia (MSA) grading scheme has the ability to predict beef eating quality for each ‘cut×cooking method combination’ from animal and carcass traits such as sex, age, breed, marbling, hot carcass weight and fatness, ageing time, etc. Following MSA testing protocols, a total of 22 different muscles, cooked by four different cooking methods and to three different degrees of doneness, were tasted by over 19 000 consumers from Northern Ireland, Poland, Ireland, France and Australia. Consumers scored the sensory characteristics (tenderness, flavor liking, juiciness and overall liking) and then allocated samples to one of four quality grades: unsatisfactory, good-every-day, better-than-every-day and premium. We observed that 26% of the beef was unsatisfactory. As previously reported, 68% of samples were allocated to the correct quality grades using the MSA grading scheme. Furthermore, only 7% of the beef unsatisfactory to consumers was misclassified as acceptable. Overall, we concluded that an MSA-like grading scheme could be used to predict beef eating quality and hence underpin commercial brands or labels in a number of European countries, and possibly the whole of Europe. In addition, such an eating quality guarantee system may allow the implementation of an MSA genetic index to improve eating quality through genetics as well as through management. Finally, such an eating quality guarantee system is likely to generate economic benefits to be shared along the beef supply chain from farmers to retailors, as consumers are willing to pay more for a better quality product.This research was supported by Meat and Livestock Australia and Murdoch University. Data were obtained through the financial contributions of the European research project ProSafeBeef (contract no. FOOD-CT-2006-36241), the Polish ProOptiBeef Farm to Fork project funded by the EU Innovative (POIG.01.03.01-00-204/09), the French ‘Direction Générale de l’Alimentation’ and FranceAgriMer. For the Irish data, the authors acknowledge the financial support of the Department of Agriculture and the Marine (DAFM) under the Food Institutional Research Measure (FIRM). Furthermore, this project would not have been possible without the practical support of the Association Institut du Charolais, the Syndicat de Défense et du promotion de la Viande de Boeuf de Charolles and the gourmet restaurants ‘Jean Denaud’ and representatives of the beef industry across Europe. The international travel required for this project has been funded by ‘Egide/Fast’ funds from the French and Australian governments, respectively (project no. FR090054) and by ‘Egide/Polonium’ funds from the French and Polish governments, respectively. The assistance and participation of the Beef CRC and Janine Lau (MLA, Australia), Alan Gee (Cosign, Australia), Ray Watson (Melbourne University, Australia) and John Thompson (UNE) are also gratefully acknowledged
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice
Neuroinflammation and microglial activation are significant processes in Alzheimer's disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer's disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer's disease and other tau-mediated neurodegenerative diseases
- …