478 research outputs found

    Thermal Wave Characterization of Semiconductors and Superconductors

    Get PDF
    Thermal wave technology has proven to be a very effective means for investigating the near surface region of several different materials. Although there are many methods for generating and detecting thermal waves the most desirable for quantitative NDE are the noncontact and nondamaging laser methods. When a material is excited with an intensity-modulated laser pump beam a thermal wave is generated within the near surface of the sample. Since the complex refractive index of most materials depends on temperature, the laser pump induced modulations in the local temperature of the sample will induce a corresponding modulation in the local refractive index. This variation in refractive index can in turn be detected through the modulation in the reflectance of a laser probe beam from the surface of the material [1,2]. This method is not only a highly effective method for generating and detecting thermal waves, but also permits thermal wave measurements to be performed with micron scale spatial resolution by utilizing highly focused pump and probe laser beams

    ArgR is an essential local transcriptional regulator of the arcABC-operon in Streptococcus suis and crucial for biological fitness in acidic environment

    Get PDF
    Streptococcus suis is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance very little is known about the factors contributing to its virulence. Recently, we identified a new putative virulence factor in Streptococcus suis, the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the arcABC-operon, which enables Streptococcus suis to survive in acidic environment. In this study, we focused on ArgR, an ADS associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an argR knock-out strain we could show that ArgR is essential for arcABC-operon expression and necessary for the biological fitness of Streptococcus suis. By cDNA expression microarray analyses and quantitative real time RT-PCR we found that the arcABC-operon is the only gene cluster regulated by ArgR, which is in contrast to many other bacteria. Reporter gene analysis with gfp under the control of the arcABC promoter demonstrated that ArgR is able to activate the arcABC promoter. Electrophoretic mobility shift assays with fragments of the arcABC promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR revealed that ArgR interacts with the arcABC promoter in vitro and in vivo by binding to a region from -147 to 72 bp upstream of the transcriptional start point. Overall our results show that in Streptococcus suis ArgR is an essential, system specific transcriptional regulator of the ADS directly interacting with the arcABC promoter in vivo

    The post randomisation method for protecting microdata

    Get PDF

    Beam profile reflectometry: a new technique for thin film measurements

    Get PDF
    In the manufacture of semiconductor devices, it is of critical importance to know the thickness and material properties of various dielectric and semiconducting thin films. Although there are many techniques for measuring these films, the most commonly used are reflection spectrophotometry [1,2] and ellipsometry [3]. In the former method, the normal- incidence reflectivity is measured as a function of wavelength. The shape of the reflectivity spectrum is then analyzed using the Fresnel equations to determine the thickness of the film. In some cases, the refractive index can also be determined provided that the dispersion of the optical constants are well known. The latter method consists of reflecting a beam of known polarization off the sample surface at an oblique angle. The film thickness, and in some cases the refractive index, can be determined from the change in polarization experienced upon reflection

    Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk

    Full text link
    It is well recognised that data mining and statistical analysis pose a serious treat to privacy. This is true for financial, medical, criminal and marketing research. Numerous techniques have been proposed to protect privacy, including restriction and data modification. Recently proposed privacy models such as differential privacy and k-anonymity received a lot of attention and for the latter there are now several improvements of the original scheme, each removing some security shortcomings of the previous one. However, the challenge lies in evaluating and comparing privacy provided by various techniques. In this paper we propose a novel entropy based security measure that can be applied to any generalisation, restriction or data modification technique. We use our measure to empirically evaluate and compare a few popular methods, namely query restriction, sampling and noise addition.Comment: 20 pages, 4 figure

    Searching for Radio Pulsars in 3EG Sources at Urumqi Observatory

    Full text link
    Since mid-2005, a pulsar searching system has been operating at 18 cm on the 25-m radio telescope of Urumqi Observatory. Test observations on known pulsars show that the system can perform the intended task. The prospect of using this system to observe 3EG sources and other target searching tasks is discussed.Comment: a training project about MSc thesi

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
    • 

    corecore