218 research outputs found
K+ to pi-mu+mu+ and doubly-charged Higgs
The rate for the lepton-number-violating decay K+ to pi- mu+mu+ is calculated
in a model which incorporates doubly-charged Higgs bosons. We find that for
reasonable values of the parameters the decay branching ratio may be as large
as 2E-16. Although this is a discouragingly small number, it is of the same
order of magnitude as the rate mediated by massive Majorana neutrinos.Comment: 8 pages, RevTex, Figure1 is P
Capture rate and neutron helicity asymmetry for ordinary muon capture on hydrogen
Applying heavy-baryon chiral perturbation theory to ordinary muon capture
(OMC) on a proton, we calculate the capture rate and neutron helicity asymmetry
up to next-to-next-to-leading order. For the singlet hyperfine state, we obtain
the capture rate Gamma_0 = 695 sec^{-1} while, for the triplet hyperfine state,
we obtain the capture rate Gamma_1 = 11.9 sec^{-1} and the neutron asymmetry
alpha_1 = 0.93. If the existing formalism is used to relate these atomic
capture rates to Gamma_{liq}, the OMC rate in liquid hydrogen, then Gamma_{liq}
corresponding to our improved values of Gamma_0 and Gamma_1 is found to be
significantly larger than the experimental value, primarily due to the updated
larger value of g_A. We argue that this apparent difficulity may be correlated
to the specious anomaly recently reported for mu^- + p to n + nu_mu + gamma,
and we suggest a possibility to remove these two "problems" simply and
simultaneously by reexamining the molecular physics input that underlies the
conventional analysis of Gamma_{liq}.Comment: 14 pages, 1 figur
Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality
The Fourier transform is often used to connect the Lorentzian energy
distribution for resonance scattering to the exponential time dependence for
decaying states. However, to apply the Fourier transform, one has to bend the
rules of standard quantum mechanics; the Lorentzian energy distribution must be
extended to the full real axis instead of being bounded from
below (``Fermi's approximation''). Then the Fourier transform
of the extended Lorentzian becomes the exponential, but only for times , a time asymmetry which is in conflict with the unitary group time evolution
of standard quantum mechanics. Extending the Fourier transform from
distributions to generalized vectors, we are led to Gamow kets, which possess a
Lorentzian energy distribution with and have exponential
time evolution for only. This leads to probability predictions
that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.
Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant
We use the random phase approximation to describe the muon capture rate on
Ca,Ca, Fe, Zr, and Pb. With
Ca as a test case, we show that the Continuum Random Phase
Approximation (CRPA) and the standard RPA give essentially equivalent
descriptions of the muon capture process. Using the standard RPA with the free
nucleon weak form factors we reproduce the experimental total capture rates on
these nuclei quite well. Confirming our previous CRPA result for the
nuclei, we find that the calculated rates would be significantly lower than the
data if the in-medium quenching of the axial-vector coupling constant were
employed.Comment: submitted to Phys. Rev.
CUORE: A Cryogenic Underground Observatory for Rare Events
CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being
a cube 5 cm on a side with a mass of 760 g. The array consists of 25 vertical
towers, arranged in a square of 5 towers by 5 towers, each containing 10 layers
of 4 crystals. The design of the detector is optimized for ultralow-background
searches: for neutrinoless double beta decay of 130Te (33.8% abundance), cold
dark matter, solar axions, and rare nuclear decays. A preliminary experiment
involving 20 crystals 3x3x6 cm3 of 340 g has been completed, and a single CUORE
tower is being constructed as a smaller scale experiment called CUORICINO. The
expected performance and sensitivity, based on Monte Carlo simulations and
extrapolations of present results, are reported.Comment: 39 pages, 12 figures, submitted to NI
Primakoff effect in eta-photoproduction off protons
We analyse data on forward eta-meson photoproduction off a proton target and
extract the eta to gamma gamma decay width utilizing the Primakoff effect. The
hadronic amplitude that enters into our analysis is strongly constrained
because it is fixed from a global fit to available gamma p to p eta data for
differential cross sections and polarizations. We compare our results with
present information on the two-photon eta-decay from the literature. We provide
predictions for future PrimEx experiments at Jefferson Laboratory in order to
motivate further studies.Comment: 5 pages, 6 figures, gamma-gamma*-eta form factor included, version to
appear in Eur. Phys. J. A
Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon
To profile the messenger RNA (mRNA) expression for the 23 known genes of matrix metalloproteinases (MMPs), 19 genes of ADAMTS, 4 genes of tissue inhibitors of metalloproteinases (TIMPs), and ADAM genes 8, 10, 12, and 17 in normal, painful, and ruptured Achilles tendons. Tendon samples were obtained from cadavers or from patients undergoing surgical procedures to treat chronic painful tendinopathy or ruptured tendon. Total RNA was extracted and mRNA expression was analyzed by quantitative real-time reverse transcription–polymerase chain reaction, normalized to 18S ribosomal RNA. In comparing expression of all genes, the normal, painful, and ruptured Achilles tendon groups each had a distinct mRNA expression signature. Three mRNA were not detected and 14 showed no significant difference in expression levels between the groups. Statistically significant (P < 0.05) differences in mRNA expression, when adjusted for age, included lower levels of MMPs 3 and 10 and TIMP-3 and higher levels of ADAM-12 and MMP-23 in painful compared with normal tendons, and lower levels of MMPs 3 and 7 and TIMPs 2, 3, and 4 and higher levels of ADAMs 8 and 12, MMPs 1, 9, 19, and 25, and TIMP-1 in ruptured compared with normal tendons. The distinct mRNA profile of each tendon group suggests differences in extracellular proteolytic activity, which would affect the production and remodeling of the tendon extracellular matrix. Some proteolytic activities are implicated in the maintenance of normal tendon, while chronically painful tendons and ruptured tendons are shown to be distinct groups. These data will provide a foundation for further study of the role and activity of many of these enzymes that underlie the pathologic processes in the tendon
A Cryogenic Underground Observatory for Rare Events: Cuore, an Update
CUORE is a proposed tightly packed array of 1000 TeO_{2} bolometers, each
being a cube 5 cm on a side with a mass of 750 gms. The array consists of 25
vertical towers, arranged in a square, of 5 towers by 5 towers, each containing
10 layers of 4 crystals. The design of the detector is optimized for ultralow-
background searches for neutrinoless double beta decay of ^{130}Te (33.8%
abundance), cold dark matter, solar axions, and rare nuclear decays. A
preliminary experiment involving 20 crystals of various sizes (MIBETA) has been
completed, and a single CUORE tower is being constructed as a smaller scale
experiment called CUORICINO. The expected performance and sensitivity, based on
Monte Carlo simulations and extrapolations of present results, are reported.Comment: in press: Nucl. Phys. of Russian Academy of Sc
Photoproduction of Pseudoscalar Mesons off Nuclei at Forward Angles
With the advent of new photon tagging facilities and novel experimental
technologies it has become possible to perform photoproduction cross section
measurements of pseudoscalar mesons on nuclei with a percent level accuracy.
The extraction of the radiative decay widths from these measurements at forward
angles is done by the Primakoff method, which requires theoretical treatment of
all processes participating in these reactions at the same percent level. In
this work we review the theoretical approach to meson photoproduction
amplitudes in the electromagnetic and strong fields of nuclei at forward
direction. The most updated description of these processes are presented based
on the Glauber theory of multiple scattering. In particular, the effects of
final state interactions, corrections for light nuclei, and photon shadowing in
nuclei are discussed.Comment: 22 pages, 8 figure
Neutrinoless Double Beta Decay in Gauge Theories
Neutrinoless double beta decay is a very important process both from the
particle and nuclear physics point of view. Its observation will severely
constrain the existing models and signal that the neutrinos are massive
Majorana particles. From the elementary particle point of view it pops up in
almost every model. In addition to the traditional mechanisms, like the
neutrino mass, the admixture of right handed currents etc, it may occur due to
the R-parity violating supersymmetric (SUSY) interactions. From the nuclear
physics point of view it is challenging, because: 1) The relevant nuclei have
complicated nuclear structure. 2) The energetically allowed transitions are
exhaust a small part of all the strength. 3) One must cope with the short
distance behavior of the transition operators, especially when the intermediate
particles are heavy (eg in SUSY models). Thus novel effects, like the double
beta decay of pions in flight between nucleons, have to be considered. 4) The
intermediate momenta involved are about 100 MeV. Thus one has to take into
account possible momentum dependent terms in the nucleon current. We find that,
for the mass mechanism, such modifications of the nucleon current for light
neutrinos reduce the nuclear matrix elements by about 25 per cent, almost
regardless of the nuclear model. In the case of heavy neutrinos the effect is
much larger and model dependent.
Taking the above effects into account, the available nuclear matrix elements
for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130,
136 and 150 and the experimental limits on the life times we have extracted new
stringent limits on the average neutrino mass and on the R-parity violating
coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
- …