218 research outputs found

    K+ to pi-mu+mu+ and doubly-charged Higgs

    Full text link
    The rate for the lepton-number-violating decay K+ to pi- mu+mu+ is calculated in a model which incorporates doubly-charged Higgs bosons. We find that for reasonable values of the parameters the decay branching ratio may be as large as 2E-16. Although this is a discouragingly small number, it is of the same order of magnitude as the rate mediated by massive Majorana neutrinos.Comment: 8 pages, RevTex, Figure1 is P

    Capture rate and neutron helicity asymmetry for ordinary muon capture on hydrogen

    Full text link
    Applying heavy-baryon chiral perturbation theory to ordinary muon capture (OMC) on a proton, we calculate the capture rate and neutron helicity asymmetry up to next-to-next-to-leading order. For the singlet hyperfine state, we obtain the capture rate Gamma_0 = 695 sec^{-1} while, for the triplet hyperfine state, we obtain the capture rate Gamma_1 = 11.9 sec^{-1} and the neutron asymmetry alpha_1 = 0.93. If the existing formalism is used to relate these atomic capture rates to Gamma_{liq}, the OMC rate in liquid hydrogen, then Gamma_{liq} corresponding to our improved values of Gamma_0 and Gamma_1 is found to be significantly larger than the experimental value, primarily due to the updated larger value of g_A. We argue that this apparent difficulity may be correlated to the specious anomaly recently reported for mu^- + p to n + nu_mu + gamma, and we suggest a possibility to remove these two "problems" simply and simultaneously by reexamining the molecular physics input that underlies the conventional analysis of Gamma_{liq}.Comment: 14 pages, 1 figur

    Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality

    Full text link
    The Fourier transform is often used to connect the Lorentzian energy distribution for resonance scattering to the exponential time dependence for decaying states. However, to apply the Fourier transform, one has to bend the rules of standard quantum mechanics; the Lorentzian energy distribution must be extended to the full real axis <E<-\infty<E<\infty instead of being bounded from below 0E<0\leq E <\infty (``Fermi's approximation''). Then the Fourier transform of the extended Lorentzian becomes the exponential, but only for times t0t\geq 0, a time asymmetry which is in conflict with the unitary group time evolution of standard quantum mechanics. Extending the Fourier transform from distributions to generalized vectors, we are led to Gamow kets, which possess a Lorentzian energy distribution with <E<-\infty<E<\infty and have exponential time evolution for tt0=0t\geq t_0 =0 only. This leads to probability predictions that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.

    Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant

    Get PDF
    We use the random phase approximation to describe the muon capture rate on 44{}^{44}Ca,48{}^{48}Ca, 56{}^{56}Fe, 90{}^{90}Zr, and 208{}^{208}Pb. With 40{}^{40}Ca as a test case, we show that the Continuum Random Phase Approximation (CRPA) and the standard RPA give essentially equivalent descriptions of the muon capture process. Using the standard RPA with the free nucleon weak form factors we reproduce the experimental total capture rates on these nuclei quite well. Confirming our previous CRPA result for the N=ZN = Z nuclei, we find that the calculated rates would be significantly lower than the data if the in-medium quenching of the axial-vector coupling constant were employed.Comment: submitted to Phys. Rev.

    CUORE: A Cryogenic Underground Observatory for Rare Events

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being a cube 5 cm on a side with a mass of 760 g. The array consists of 25 vertical towers, arranged in a square of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow-background searches: for neutrinoless double beta decay of 130Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals 3x3x6 cm3 of 340 g has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: 39 pages, 12 figures, submitted to NI

    Primakoff effect in eta-photoproduction off protons

    Get PDF
    We analyse data on forward eta-meson photoproduction off a proton target and extract the eta to gamma gamma decay width utilizing the Primakoff effect. The hadronic amplitude that enters into our analysis is strongly constrained because it is fixed from a global fit to available gamma p to p eta data for differential cross sections and polarizations. We compare our results with present information on the two-photon eta-decay from the literature. We provide predictions for future PrimEx experiments at Jefferson Laboratory in order to motivate further studies.Comment: 5 pages, 6 figures, gamma-gamma*-eta form factor included, version to appear in Eur. Phys. J. A

    Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon

    Get PDF
    To profile the messenger RNA (mRNA) expression for the 23 known genes of matrix metalloproteinases (MMPs), 19 genes of ADAMTS, 4 genes of tissue inhibitors of metalloproteinases (TIMPs), and ADAM genes 8, 10, 12, and 17 in normal, painful, and ruptured Achilles tendons. Tendon samples were obtained from cadavers or from patients undergoing surgical procedures to treat chronic painful tendinopathy or ruptured tendon. Total RNA was extracted and mRNA expression was analyzed by quantitative real-time reverse transcription–polymerase chain reaction, normalized to 18S ribosomal RNA. In comparing expression of all genes, the normal, painful, and ruptured Achilles tendon groups each had a distinct mRNA expression signature. Three mRNA were not detected and 14 showed no significant difference in expression levels between the groups. Statistically significant (P < 0.05) differences in mRNA expression, when adjusted for age, included lower levels of MMPs 3 and 10 and TIMP-3 and higher levels of ADAM-12 and MMP-23 in painful compared with normal tendons, and lower levels of MMPs 3 and 7 and TIMPs 2, 3, and 4 and higher levels of ADAMs 8 and 12, MMPs 1, 9, 19, and 25, and TIMP-1 in ruptured compared with normal tendons. The distinct mRNA profile of each tendon group suggests differences in extracellular proteolytic activity, which would affect the production and remodeling of the tendon extracellular matrix. Some proteolytic activities are implicated in the maintenance of normal tendon, while chronically painful tendons and ruptured tendons are shown to be distinct groups. These data will provide a foundation for further study of the role and activity of many of these enzymes that underlie the pathologic processes in the tendon

    A Cryogenic Underground Observatory for Rare Events: Cuore, an Update

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO_{2} bolometers, each being a cube 5 cm on a side with a mass of 750 gms. The array consists of 25 vertical towers, arranged in a square, of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow- background searches for neutrinoless double beta decay of ^{130}Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals of various sizes (MIBETA) has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: in press: Nucl. Phys. of Russian Academy of Sc

    Photoproduction of Pseudoscalar Mesons off Nuclei at Forward Angles

    Full text link
    With the advent of new photon tagging facilities and novel experimental technologies it has become possible to perform photoproduction cross section measurements of pseudoscalar mesons on nuclei with a percent level accuracy. The extraction of the radiative decay widths from these measurements at forward angles is done by the Primakoff method, which requires theoretical treatment of all processes participating in these reactions at the same percent level. In this work we review the theoretical approach to meson photoproduction amplitudes in the electromagnetic and strong fields of nuclei at forward direction. The most updated description of these processes are presented based on the Glauber theory of multiple scattering. In particular, the effects of final state interactions, corrections for light nuclei, and photon shadowing in nuclei are discussed.Comment: 22 pages, 8 figure

    Neutrinoless Double Beta Decay in Gauge Theories

    Full text link
    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. Its observation will severely constrain the existing models and signal that the neutrinos are massive Majorana particles. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the neutrino mass, the admixture of right handed currents etc, it may occur due to the R-parity violating supersymmetric (SUSY) interactions. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about 100 MeV. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25 per cent, almost regardless of the nuclear model. In the case of heavy neutrinos the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 and the experimental limits on the life times we have extracted new stringent limits on the average neutrino mass and on the R-parity violating coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
    corecore