1,131 research outputs found

    A Comprehensive Study of the L1551 IRS 5 Binary System

    Get PDF
    We model the Class I source L1551 IRS 5, adopting a flattened infalling envelope surrounding a binary disk system and a circumbinary disk. With our composite model, we calculate self-consistently the spectral energy distribution of each component of the L1551 IRS 5 system, using additional constraints from recent observations by ISO, the water ice feature from observations with SpeX, the SCUBA extended spatial brightness distribution at sub-mm wavelengths, and the VLA spatial intensity distributions at 7 mm of the binary disks. We analyze the sensitivity of our results to the various parameters involved. Our results show that a flattened envelope collapse model is required to explain simultaneously the large scale fluxes and the water ice and silicate features. On the other hand, we find that the circumstellar disks are optically thick in the millimeter range and are inclined so that their outer parts hide the emission along the line of sight from their inner parts. We also find that these disks have lower mass accretion rates than the infall rate of the envelope.Comment: 38 pages, 13 figures. To appear in ApJ (v586 April 1, 2003 issue

    Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    Get PDF
    NGC6611 and its parental cloud, the Eagle Nebula (M16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. We identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 micron. In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. We confirm the membership of these stars to M16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T-Tauri stars with disks and envelopes. We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of ClassII stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light.Comment: Accepted for publication in A&

    Multiplicity, Disks and Jets in the NGC 2071 Star-Forming Region

    Full text link
    We present centimeter and millimeter observations of the NGC 2071 star-forming region performed with the VLA and CARMA. We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show SEDs dominated by free-free thermal emission at cm wavelengths, and thermal dust emission at mm wavelengths, suggesting that all of them are associated with YSOs. IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a time-span of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of ~120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.Comment: Accepted by The Astrophysical Journa

    Spitzer observations of the Orion OB1 association: disk census in the low mass stars

    Full text link
    We present new Spitzer Space Telescope observations of two fields in the Orion OB1 association. We report here IRAC/MIPS observations for 115 confirmed members and 41 photometric candidates of the ~10 Myr 25 Orionis aggregate in the OB1a subassociation, and 106 confirmed members and 65 photometric candidates of the 5 Myr region located in the OB1b subassociation. The 25 Orionis aggregate shows a disk frequency of 6% while the field in the OB1b subassociation shows a disk frequency of 13%. Combining IRAC, MIPS and 2MASS photometry we place stars bearing disks in several classes: stars with optically thick disks (class II systems), stars with an inner transitional disks (transitional disk candidates) and stars with "evolved disks"; the last exhibit smaller IRAC/MIPS excesses than class II systems. In all, we identify 1 transitional disk candidate in the 25 Orionis aggregate and 3 in the OB1b field; this represents ~10% of the disk bearing stars, indicating that the transitional disk phase can be relatively fast. We find that the frequency of disks is a function of the stellar mass, suggesting a maximum around stars with spectral type M0. Comparing the infrared excess in the IRAC bands among several stellar groups we find that inner disk emission decays with stellar age, showing a correlation with the respective disk frequencies. The disk emission at the IRAC and MIPS bands in several stellar groups indicates that disk dissipation takes place faster in the inner region of the disks. Comparison with models of irradiated accretion disks, computed with several degrees of settling, suggests that the decrease in the overall accretion rate observed in young stellar groups is not sufficient to explain the weak disk emission observed in the IRAC bands for disk bearing stars with ages 5 Myr or older.Comment: Accepted in the Astrophysical Journa

    Correlation between the spatial distribution of circumstellar disks and massive stars in the young open cluster NGC 6611. II: Cluster members selected with Spitzer/IRAC

    Full text link
    Context: the observations of the proplyds in the Orion Nebula Cluster, showing clear evidence of ongoing photoevaporation, have provided a clear proof about the role of the externally induced photoevaporation in the evolution of circumstellar disks. NGC 6611 is an open cluster suitable to study disk photoevaporation, thanks to its large population of massive members and of stars with disk. In a previous work, we obtained evidence of the influence of the strong UV field generated by the massive cluster members on the evolution of disks around low-mass Pre-Main Sequence members. That work was based on a multi-band BVIJHK and X-ray catalog purposely compiled to select the cluster members with and without disk. Aims: in this paper we complete the list of candidate cluster members, using data at longer wavelengths obtained with Spitzer/IRAC, and we revisit the issue of the effects of UV radiation on the evolution of disks in NGC 6611. Methods: we select the candidate members with disks of NGC 6611, in a field of view of 33'x34' centered on the cluster, using IRAC color-color diagrams and suitable reddening-free color indices. Besides, using the X-ray data to select Class III cluster members, we estimate the disks frequency vs. the intensity of the incident radiation emitted by massive members. Results: we identify 458 candidate members with circumstellar disks, among which 146 had not been revealed in our previous work. Comparing of the various color indices we used to select the cluster members with disk, we claim that they detect the excesses due to the emission of the same physical region of the disk: the inner rim at the dust sublimation radius. Our new results confirm that UV radiation from massive stars affects the evolution of nearby circumstellar disks.Comment: Accepted for publication at Astronomy & Astrophysic

    Unveiling the Structure of Pre-Transitional Disks

    Full text link
    In the past few years, several disks with inner holes that are empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of "pre-transitional disks" with gaps; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thick inner disk. Here we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in Taurus as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also model the broad-band SEDs of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, considering the finite size of the star. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.Comment: Accepted for publication in ApJ on May 10, 2010; 29 page

    A Spitzer IRS Survey of NGC 1333: Insights into disk evolution from a very young cluster

    Full text link
    We report on the {\lambda} = 5-36{\mu}m Spitzer Infrared Spectrograph spectra of 79 young stellar objects in the very young nearby cluster NGC 1333. NGC 1333's youth enables the study of early protoplanetary disk properties, such as the degree of settling as well as the formation of gaps and clearings. We construct spectral energy distributions (SEDs) using our IRS data as well as published photometry and classify our sample into SED classes. Using "extinction-free" spectral indices, we determine whether the disk, envelope, or photosphere dominates the spectrum. We analyze the dereddened spectra of objects which show disk dominated emission using spectral indices and properties of silicate features in order to study the vertical and radial structure of protoplanetary disks in NGC 1333. At least nine objects in our sample of NGC 1333 show signs of large (several AU) radial gaps or clearings in their inner disk. Disks with radial gaps in NGC 1333 show more-nearly pristine silicate dust than their radially continuous counterparts. We compare properties of disks in NGC 1333 to those in three other well studied regions, Taurus-Auriga, Ophiuchus and Chamaeleon I, and find no difference in their degree of sedimentation and dust processing.Comment: 67 pages, 20 figures, accepted to The Astrophysical Journal Supplement Serie
    corecore