184 research outputs found
Phase diversity restoration of sunspot images I. Relations between penumbral and photospheric features
We investigate the dynamics of and the relations between small-scale
penumbral and photospheric features near the outer penumbral boundary:
penumbral grains (PGs), dark penumbral fibrils, granules, and photospheric
G-band bright points. The analysis is based on a 2 h time sequence of a sunspot
close to disc center, taken simultaneously in the G-band and in the blue
continuum at 450.7 nm. Observations were performed at the Swedish Vacuum Solar
Telescope (La Palma) in July 1999. A total of 2564 images (46 arcsec x 75
arcsec) were corrected for telescope aberrations and turbulence perturbations
by applying the inversion method of phase diversity. Our findings can by
summarized as follows: (a) One third of the outward-moving PGs pass through the
outer penumbral boundary and then either continue moving as small bright
features or expand and develop into granules. (b) Former PGs and G-band bright
points next to the spot reveal a different nature. The latter have not been
identified as a continuation of PGs escaping from the penumbra. The G-band
bright points are mostly born close to dark penumbral fibrils where the
magnetic field is strong, whereas PGs stem from the less-magnetized penumbral
component and evolve presumably to non-magnetic granules or small bright
features.Comment: Accepted by A&A, 9 pages and 5 figure
Bronchial mucosal mast cells in asymptomatic smokers relation to structure, lung function and emphysema
AbstractThe pathologic mechanisms of chronic obstructive pulmonary disease (COPD) most certainly involves neutrophil granulocytes, cytotoxic T-cells, macophages and mast cells. The aim of this study was to investigate the relation between the number of mast cells in different compartments in bronchial biopsies of central proximal airways to structural changes, lung function tests and emphysema detected by high resolution computed tomography (HRCT).Twenty nine asymptomatic smoking and 16 never-smoking men from a population study were recruited. Central bronchial biopsies were stained to identify mast cells by immunohistochemistry. The number of mast cells in the epithelium, lamina propria and smooth muscle as well as epithelial integrity and thickness of the tenascin and laminin layer were determined.Smokers had increased numbers of mast cells in all compartments (P<0.001). Structural changes were correlated to mast cell numbers with the closest associations to mast cell numbers in the smooth muscle [epithelial integrity (Rs=−0.48, P=0.008), laminin layer (Rs=0.63, P=0.0002), tenascin layer (Rs=0.40, P=0.03)]. Similar correlations between mast cells and lung function tests were seen [functional residual capacity (FRC) (Rs=0.60, P=0.0006), total lung capacity (TLC) (Rs=0.44, P=0.02) and residual volume (RV) (Rs=0.41, P=0.03)]. No correlations could be detected between mast cells and FEV1 or to emphysema.Smoking is associated with an increase of mast cells in all compartments of the bronchial mucosa, including smooth muscle, and this is related to altered airway structure and function
Characterization of horizontal flows around solar pores from high-resolution time series of images
Though there is increasing evidence linking the moat flow and the Evershed
flow along the penumbral filaments, there is not a clear consensus regarding
the existence of a moat flow around umbral cores and pores, and the debate is
still open. Solar pores appear to be a suitable scenario to test the
moat-penumbra relation as evidencing the direct interaction between the umbra
and the convective plasma in the surrounding photosphere, without any
intermediate structure in between. The present work studies solar pores based
on high resolution ground-based and satellite observations. Local correlation
tracking techniques have been applied to different-duration time series to
analyze the horizontal flows around several solar pores. Our results establish
that the flows calculated from different solar pore observations are coherent
among each other and show the determinant and overall influence of exploding
events in the granulation around the pores. We do not find any sign of
moat-like flows surrounding solar pores but a clearly defined region of inflows
surrounding them. The connection between moat flows and flows associated to
penumbral filaments is hereby reinforced by this work.Comment: 10 pages, 10 figures, Accepted for publication in Astronomy and
Astrophysics
CRISP Spectropolarimetric Imaging of Penumbral Fine Structure
We discuss penumbral fine structure in a small part of a pore, observed with
the CRISP imaging spectropolarimeter at the Swedish 1-m Solar Telescope (SST),
close to its diffraction limit of 0.16 arcsec. Milne-Eddington inversions
applied to these Stokes data reveal large variations of field strength and
inclination angle over dark-cored penumbral intrusions and a dark-cored light
bridge. The mid-outer part of this penumbra structure shows 0.3 arcsec wide
spines, separated by 1.6 arcsec (1200 km) and associated with 30 deg
inclination variations. Between these spines, there are no small-scale magnetic
structures that easily can be be identified with individual flux tubes. A
structure with nearly 10 deg more vertical and weaker magnetic field is seen
midways between two spines. This structure is co-spatial with the brightest
penumbral filament, possibly indicating the location of a convective upflow
from below.Comment: Accepted for publication in ApJL 17 Oct 2008. One Figure adde
Spatio-Temporal Scaling of Solar Surface Flows
The Sun provides an excellent natural laboratory for nonlinear phenomena. We
use motions of magnetic bright points on the solar surface, at the smallest
scales yet observed, to study the small scale dynamics of the photospheric
plasma. The paths of the bright points are analyzed within a continuous time
random walk framework. Their spatial and temporal scaling suggest that the
observed motions are the walks of imperfectly correlated tracers on a turbulent
fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter
Dynamic fibrils in H-alpha and C IV
Aim: To study the interaction of the solar chromosphere with the transition
region, in particular active-region jets in the transition region and their
relation to chromospheric fibrils. Methods: We carefully align image sequences
taken simultaneously in C IV with the Transition Region and Coronal Explorer
and in H-alpha with the Swedish 1-m Solar Telescope. We examine the temporal
evolution of "dynamic fibrils", i.e., individual short-lived active-region
chromospheric jet-like features in H-alpha. Results: All dynamic fibrils appear
as absorption features in H-alpha that progress from the blue to the red wing
through the line, and often show recurrent behavior. Some of them, but not all,
appear also as bright features in C IV which develop at or just beyond the apex
of the H-alpha darkening. They tend to best resemble the H-alpha fibril at +700
mA half a minute earlier. Conclusions: Dynamic chromospheric fibrils observed
in H-alpha regularly correspond to transition-region jets observed in the
ultraviolet. This correspondence suggests that some plasma associated with
dynamic fibrils is heated to transition-region temperatures.Comment: 8 pages, 8 figure
First reported foodborne outbreak associated with microsporidia, Sweden, October 2009
Microsporidia are spore-forming intracellular parasites that infrequently cause disease in immunocompetent persons. This study describes the first report of a foodborne microsporidiosis outbreak which affected persons visiting a hotel in Sweden. Enterocytozoon bieneusi was identified in stool samples from 7/11 case-patients, all six sequenced samples were genotype C. To confirm that this was not a chance finding, 19 stool samples submitted by healthy persons from a comparable group who did not visit the hotel on that day were tested; all were negative for microsporidia. A retrospective cohort study identified 135 case-patients (attack rate 30%). The median incubation period was 9 days. Consumption of cheese sandwiches [relative risk (RR) 4·1, 95% confidence interval (CI) 1·4–12·2] and salad (RR 2·1, 95% CI 1·1–4) were associated with illness. Both items contained pre-washed, ready-to-eat cucumber slices. Microsporidia may be an under-reported cause of gastrointestinal outbreaks; we recommend that microsporidia be explored as potential causative agents in food- and waterborne outbreaks, especially when no other organisms are identified
A one-year study of foodborne illnesses in the municipality of Uppsala, Sweden.
Surveillance was enhanced and a retrospective interview study performed in 1998-99 to determine incidence, causes, and costs of foodborne illnesses in Uppsala, Sweden. Sixty-eight percent of the detected foodborne illness incidents were single cases, and 32% were outbreaks. Most (85%) of the incidents came to the attention of the municipal authorities through telephone calls from affected persons. Calicivirus, Campylobacter spp., and Staphyloccocus aureus were the most common etiological agents; meat, meat products, and mixed dishes were the most implicated food categories. The incidence of foodborne illness was estimated to be 38 cases per 1,000 inhabitants per year. The estimated average costs per illness were 2,164 Swedish Krona (SEK) (57) to the patient. The annual cost of foodborne illnesses in Sweden was estimated to be 1,082 million SEK ($123 million)
Mapping the Magnetic Field of Flare Coronal Loops
Here we report on the unique observation of flaring coronal loops at the
solar limb using high resolution imaging spectropolarimetry from the Swedish
1-meter Solar Telescope. The vantage position, orientation and nature of the
chromospheric material that filled the flare loops allowed us to determine
their magnetic field with unprecedented accuracy using the weak-field
approximation method. Our analysis reveals coronal magnetic field strengths as
high as 350 Gauss at heights up to 25 Mm above the solar limb. These
measurements are substantially higher than a number of previous estimates and
may have considerable implications for our current understanding of the
extended solar atmosphere.Comment: 12 pages, 14 figures, accepted in Ap
Influence of phase-diversity image reconstruction techniques on circular polarization asymmetries
Full Stokes filter-polarimeters are key instruments for investigating the
rapid evolution of magnetic structures on the solar surface. To this end, the
image quality is routinely improved using a-posteriori image reconstruction
methods. We analyze the robustness of circular polarization asymmetries to
phase-diversity image reconstruction techniques. We use snapshots of
magneto-hydrodynamical simulations carried out with different initial
conditions to synthesize spectra of the magnetically sensitive Fe I line at
5250.2 A. We degrade the synthetic profiles spatially and spectrally to
simulate observations with the IMaX full Stokes filter-polarimeter. We also
simulate the focused/defocused pairs of images used by the phase-diversity
algorithm for reconstruction and the polarimetric modulation scheme. We assume
that standard optimization methods are able to infer the projection of the
wavefront on the Zernike polynomials with 10% precision. We also consider the
less favorable case of 25% precision. We obtain reconstructed monochromatic
modulated images that are later demodulated and compared with the original
maps. Although asymmetries are often difficult to define in the quiet Sun due
to the complexity of the Stokes V profiles, we show how asymmetries are
degraded with spatial and spectral smearing. The results indicate that,
although image reconstruction techniques reduce the spatial smearing, they can
modify the asymmetries of the profiles, mainly caused by the appearance of
spatially-correlated noise.Comment: 10 pages, accepted for publication in A&
- …