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Abstract

Here, we report on the unique observation of flaring coronal loops at the solar limb using high-resolution imaging
spectropolarimetry from the Swedish 1 m Solar Telescope. The vantage position, orientation, and nature of the
chromospheric material that filled the flare loops allowed us to determine their magnetic field with unprecedented
accuracy using the weak-field approximation method. Our analysis reveals coronal magnetic field strengths as high
as 350 G at heights up to 25Mm above the solar limb. These measurements are substantially higher than a number
of previous estimates and may have considerable implications for our current understanding of the extended solar
atmosphere.

Key words: instrumentation: polarimeters – Sun: chromosphere – Sun: corona – Sun: flares – Sun: magnetic fields
– techniques: polarimetric

Supporting material: animation

1. Introduction

The structure and dynamics of the most energetic events in
the solar outer atmosphere such as flares, eruptions, coronal
loops, and CMEs are controlled by the magnetic field. This
field is created deep in the solar interior by dynamo processes,
transported outwards by magnetic buoyancy, and permeates the
photosphere in dense flux ropes—giving the familiar appear-
ance of sunspots and pores, associated with coronal active
regions (ARs). Over time, this intense emergent field diffuses
throughout the photosphere and fills the solar chromosphere
and corona, dominating the movement and behavior of the hot
plasma. The majority of the EUV/X-ray emission is from loops
of plasma entrained along closed fields. Measurements of the
magnetic field in loops is key to our understanding of the
corona and is crucial to solving the long-standing problem of
coronal heating (Klimchuk 2006). Despite the tremendous
efforts made with different techniques over the past two
decades, a reliable quantitative measurement of the magnetic
flux density of coronal loops remains a central problem in solar
(and stellar) physics (Judge et al. 2001; Wiegelmann et al.
2014; Casini et al. 2017).

Gyro-resonance emission is an effective method for
measuring the magnetic field over ARs of the Sun and some
stars (Brosius & White 2006). However, the radio observations
are restricted by modest spatial resolution compared with
methods in the visible and near-infrared, they can only be

applied at high magnetic field strengths (>100 G) to overcome
free–free opacity, and their formation height is not determined
by the data themselves. Indirect methods include coronal
seismology, which relies on observations of magnetohydro-
dynamic (MHD) waves to infer the properties of the magnetic
field (Nakariakov & Verwichte 2005; Tomczyk et al. 2007).
These methods also depend on the assumed nature of the wave
modes (local tube modes versus genuine Alfvén waves in more
homogeneous media). The most powerful magnetic diagnostics
of solar and astrophysical plasmas are based on measurements
of the polarized states of light described by the Stokes profiles
(I, Q, U, V ). Despite its promise (Lin et al. 2000, 2004; Judge
et al. 2001), solar coronal polarimetry is extremely difficult due
to the inherently low signal-to-noise ratios (S/Ns; the corona
is, at best, a million times dimmer than the photosphere). To
improve the signal, a coarse spatial (5000–10000 km) and
temporal (30–60 minutes) resolution has been used with small
instruments in the past (Lin et al. 2000, 2004). However, the
highly inhomogeneous corona requires high spatial resolution
and the highly dynamic nature of many coronal processes, such
as reconnection/diffusion, requires high temporal resolution.
Current instrumentation can only achieve high-resolution
polarimetric measurements during certain favorable conditions.
During solar flares, material evaporates from the chromosphere
to the corona and subsequently condenses and falls back to the
surface along loops in the form of coronal rain. The high
density and lower temperature (due to a lack of sustained
heating) permits the use of chromospheric diagnostic transi-
tions as the plasma falls and traces out otherwise “coronal”
field lines (Schad et al. 2016; Libbrecht et al. 2019).
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In 2017 September, AR 12673 produced the most powerful
flares of solar cycle 24 as it was rotating from disk center to the
limb. On 2017 September 10, the AR was just behind the west
limb when it produced an X8.2-class flare (SOL2017-09-
10T16:06 UT) (Figure 1). Here, we report on the unique
observations of the flaring coronal loops during this event at the
solar limb using high-resolution imaging spectropolarimetry in
the line of singly ionized calcium at 8542.1Å, from the
Swedish 1 m Solar Telescope. The vantage position, orienta-
tion, and nature of the chromospheric material that filled the
flare loops allowed us to determine their magnetic field with
unprecedented accuracy using weak-field approximation
(WFA) method.

2. Observations and Data Reduction

The target of our observations was NOAA AR 12673, which
produced a series of very energetic flares between 2017
September 1 and 10. The AR was observed between 16:07:21
and 17:58:37 on 2017 September 10 when it was close to the
west limb, with heliocentric coordinates of the center of the
field of view (FOV) at the beginning of the observations [947″,
−138″]. Our observations commenced 1 minute after the X8.2
flare peak (∼16:06 UT). The observations were carried out with
the CRisp Imaging SpectroPolarimeter (CRISP; Scharmer 2006;
Scharmer et al. 2008) and the CHROMospheric Imaging
Spectrometer (CHROMIS) instruments, both based on dual
Fabry–Pérot interferometers (FPI) mounted on the Swedish 1 m
Solar Telescope (SST; Scharmer et al. 2003) on La Palma. The
imaging setup of the SST includes a dichroic beamsplitter
(splits at 500 nm), and CRISP is mounted in the resulting red
beam and CHROMIS in the blue beam (Löfdahl et al. 2018).
The two instruments can collect data simultaneously, but the
cameras and scan sequences are not synchronized between
them. The CRISP data comprised of imaging spectropolari-
metry in the Ca II 8542Å line consisted of 21 line positions
with an irregular step. These positions were −1.75Å to
+1.75Å (±1.75, ±0.945, ±0.735, ±0.595, ±0.455, ±0.35,
±0.28, ±0.21, ±0.14, ±0.07, 0.0Å) from line core (see the
animation associated with Figure 8(a) showing a full spectral
scan). Each spectral scan of the Ca II 8542Å line had an

acquisition time of 16 s but the cadence of the CRISP time
series was 33 s due to inclusion of spectropolarimetric scans in
the Fe I 6302Å photospheric line. However, we note that the
present paper includes only the analysis of the Ca II 8542Å
data, as the AR, flare loops, and footpoints of these loops were
not detected in the Fe I line. The transmission FWHM for Ca
8542Å line is 107.3 mÅ with a prefilter FWHM of 9.3Å. Our
spatial sampling was 0 057 pixel−1 over the 41×41Mm2

FOV.
The data were reconstructed with the Multi-Object Multi-

Frame Blind Deconvolution (MOMFBD; Löfdahl 2002; van
Noort et al. 2005). We applied the CRISP data reduction
pipeline (de la Cruz Rodríguez et al. 2015) for standard data
processing. The polarimetric calibration was performed using a
linear polarizer and a quarter-wave plate at many different
angles close to the primary focus on the optical table. CRISP
records four liquid-crystal states per wavelength, which are
linear combinations of the Stokes parameters. These states are
demodulated to obtain images of the full Stokes vector I,Q,U,
and V components using the calibration. For calibrating the
CRISP Ca II 8542Ådata, we followed the procedure described
in de la Cruz Rodríguez et al. (2013) and used a synthetic
Ca II 8542Åprofile computed by a three-dimensional (3D)
NLTE radiative transfer code (de la Cruz Rodríguez et al.
2011) and an FTS atlas profile (Neckel 1999) convolved with
the CRISP instrumental profile. In order to normalize the data
to the continuum intensity, we used a spatially averaged Ca II
8542Å profile over the 160×150 pix2 rectangle centered at a
quiet-Sun area of (X, Y)=(34, 4)Mm at μ≈0.15 (Figure 2).
Figure 2 presents the Ca II 8542Å Stokes I at Δλ=

±0.945Å and Q,U, and V monochromatic images at
Δλ=±0.455Å at 16:27 UT of the flare loops. The images
show that all three polarized Stokes components are detected
above the level of background emission. However, the Stokes
Q and U profiles are very noisy, and we have not used them for
the measurement of the perpendicular component (with respect
to the line of sight) of the magnetic field. We note that
scattering polarization in Ca II 8542Å line is expected to be
very low, which explains why linear polarizations detected
through the CRISP FPI system are weak and noisy in our data
(Štěpán & Trujillo Bueno 2016).
We find that most of the Stokes V profiles located in the

lower part of the observed loop arcade have a signal around
10−2, and most of the pixels located in the upper parts of the
observed loop arcade have a signal above ∼1.5×10−3 in units
of continuum intensity Ic. These are above the noise level
(∼0.5×10−3 at the disk and ∼0.1×10−3 above the limb) of
these Ca II 8542Å data.
Simultaneous observations were also taken with the

CHROMIS instrument. CHROMIS is a newly installed (2016
August) Fabry–Pérot interferometer that observes the blue part
of the spectrum in the range 3900–4900Å. The CHROMIS
observations comprised spectral imaging in the Hβ 4861Å and
Ca II H 3968.5 and K 3933.7Å lines, plus one position in the
continuum at 4000Å. The Ca II H and K line scans consist of
19 positions ranging from −1Å to +1Å from line core, while
the Hβ scan consists of 21 line positions ranging from −1.2 to
+1.2Å. A full spectral scan for all three lines plus a single
continuum position had a total acquisition time of 20 s, which
is the temporal cadence of the CHROMIS data time series.
The transmission FWHM for the CHROMIS spectrometer

Figure 1. GOES X-ray light curve of the X8.2 class flare of 2017
September 10.
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(Löfdahl et al. 2018) is 130 mÅ with a spatial sampling of
0 0375 pixel−1 and a FOV of about 45×30 Mm2. The
CHROMIS data were processed using the CHROMISRED data
reduction pipeline (Löfdahl et al. 2018), which includes Multi-
Object Multi-Frame Blind Deconvolution image restoration.
The pipeline also performs the calibration of the observed
intensity in absolute SI intensity units by scaling the spatially
averaged spectrum to an atlas profile.

The event was also observed with NASA’s Solar Dynamics
Observatory (SDO) in the Atmospheric Imaging Assembly
(AIA; Lemen et al. 2012) 1600/1700Å channels (Figure 3;
dominated by CIV emission at ∼10000 K) and several
Extreme-UV channels. Figure 4 shows images from the AIA
at 16:29 UT in the HeII 304 and Fe IX 171Å channels with
emission from the transition region (∼100,000 K) and corona
(∼1,000,000 K). The AIA data was recorded with a cadence of
12 s and spatial sampling of 0 6 pixel−1. The images are co-
aligned with SST/CHROMIS data.

3. Analysis and Results

A well-developed set of flaring coronal loops was observed
10 minutes after the beginning of the impulsive phase of the
flare (Figures 3 and 4). The X8.2 flare led to intense heating
and evaporation of chromospheric plasma into the loop system.
The coronal loops subsequently are filled with dense and cool
plasma radiating strongly in chromospheric lines including the
magnetically sensitive Ca II 8542Å (Figures 2–4). We note that
the origin of the cool plasma in flare coronal loops is still under
debate in the solar community. However, rapid cooling of
evaporated plasma through radiation losses is considered as the
most plausible explanation of these phenomenon (Klimchuk
et al. 1987; Schmieder et al. 1996). Unfortunately, footpoints of
the observed flare loops were not detected in SST data,
suggesting that they are behind the limb.
The off-limb location of the flare coronal loops minimized

contaminations in the chromospheric spectra caused by

Figure 2. SST images of the flare loops in Ca II 8542 Å Stokes I at Δλ=±0.945 Å and Q, U and V at Δλ=−0.455 Å at 16:27 UT.
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Figure 3. SDO/AIA 1600 Å image (a) of AR 12673 near the west limb showing the X8.2 flare coronal loops on 2017 September 10. The SST FOV is outlined with
the white box. A composite of SST/CHROMIS Hβ±1.2Å (corresponding to ±75 km s−1) images (b) of the same flaring loops.

Figure 4. SDO/AIA 171 and 304 Å images (top panels) of the X8.2 class solar flare loops on 2017 September 10, 16:29 UT co-aligned with SST/CHROMIS Hβ line
core (bottom left panel) and the composite of Hβ±0.735 Å (bottom right panel) images.
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line-of-sight (LOS) on-disk effects, providing polarization data
of unprecedented quality.

3.1. LOS Magnetic Field

3.1.1. Weak-field Approximation

Circular polarization images (Stokes V ) of the observed flaring
loops acquired in Ca II 8542Å reveal strong polarization signals
along the loops (Figure 2). We use the weak-field approximation
(WFA) technique to produce maps of the LOS magnetic field
component (BLOS) for the flare coronal loops. The WFA is the
simplest approach to calculate the magnetic flux density from the
observed line intensity and polarization (Cauzzi et al. 1993; Landi
Degl’Innocenti & Landolfi 2004; Asensio Ramos 2011; de la
Cruz Rodríguez et al. 2013; Kleint 2017; Centeno 2018; Kuridze
et al. 2018). More complex methods such as inversions of
polarimetric data are not applicable in this case as they are not
optimized for off-limb chromospheric/coronal spectropolarimetric
observations. The WFA can provide an accurate estimate of the
chromospheric and coronal magnetic field. The main limitation of
the WFA is that it can be applied only if the Zeeman splitting
(ΔλH) is much smaller than the Doppler width (ΔλD) of the
observed spectral line (Ca II 8542Å line in our case) (de la Cruz
Rodríguez et al. 2013),

l lD D ( ). 1H D

Furthermore, the magnetic field and LOS velocity have to be
close to a constant as a function of distance along the LOS in
the atmosphere. In this regime, the Stokes profiles can be
expressed as (Landi Degl’Innocenti & Landi Degl’Innocenti
1977)

l l
l
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where geff is the first order effective Landé factor, and λ0 is the
central wavelength of the spectral line. Ḡ is a second-order
effective Landé factor related to geff with
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for the angular momentum J1 and J2 of the involved energy
levels with Landé factors g1 and g2 (Landi Degl’Innocenti &
Landi Degl’Innocenti 1977). For Ca II 8542Å line geff=1.1
and =Ḡ 1.21. We note that the units for the wavelength and
magnetic field are Å and G, respectively.

The low Landé factor and relatively broader line width due
to the increased temperature (compared to photospheric
temperature) of Ca II 8542Å suggests that the WFA is an
appropriate method for this line. Under chromospheric
conditions, the upper limit of the WFA for the Ca II 8542Å
is estimated to be approximately B 2500 G (Asensio
Ramos 2011; de la Cruz Rodríguez et al. 2013). The average
field strength in the chromosphere and corona are well below
this value, so the WFA should be a valid method for inferring
the magnetic field using the Ca II 8542Å line. For most of the
pixels in the observed coronal loops, Equation (1) is fulfilled.

Line profiles that have not met the criterion presented in
Equation (1) are excluded from the analysis. Figure 5 shows an
example of the Stokes I and V profiles and the WFA fit
obtained from the derivative of Stokes I, for the pixel with the
weakest LOS magnetic field.
As mentioned above, the WFA is applicable when the

magnetic field and velocities are close to a constant along the
LOS. The Ca II 8542 line emission is formed over a wide layer
of the solar atmosphere, suggesting that due to the vertical
stratifications, the magnetic field can have a strong gradient as a
function of height in the atmosphere. However, off-limb
coronal-loop observations provide less inhomogeneity along
the LOS. Magnetic field/velocity gradients and/or disconti-
nuities can produce asymmetric Stokes V profiles (Khomenko
et al. 2003). Therefore, asymmetries can be used as a good
indicator of magnetic field/velocity gradients.
To quantify the asymmetry of the Ca II 8542 line Stokes V

profiles, we use a technique similar to that described in

Figure 5. Circular polarization profile (black dashed line) of the pixel with the
weakest LOS magnetic field (X=15 Mm, Y=30 Mm in Figure 2) at 16:28
UT. The blue line shows the intensity (Stokes I), and the solid red line shows
the WFA fit obtained from the derivative of Stokes I.

Figure 6. Asymmetric Stokes V profile observed for a pixel located at around
X=16 Mm, Y=32 Mm (Figure 2). ab and ar denote the red and blue wing
amplitudes, which define the amplitude asymmetry, A.

5

The Astrophysical Journal, 874:126 (12pp), 2019 April 1 Kuridze et al.



Sigwarth (2001). We measured the absolute values of
amplitudes of the red and blue lobes, ab and ar, respectively,
for every pixel in the observed coronal loops and compute
amplitude asymmetry with

=
-∣ ∣
( )

( )A
a a

a amax ,
. 5b r

r b

A=0 corresponds to no amplitude asymmetries in the Stokes V
line profiles and A=1 corresponds to maximum asymmetry,
which is the case when Stokes V has a single lobe profile. Figure 6
shows an asymmetric Stokes V profile with A=0.4. Profiles with
asymmetry higher than 0.4 were excluded from the analysis. This
value was chosen based on a statistical analysis of randomized
profiles (see Section 3.1.3) indicating that the asymmetries below
this value are very likely introduced by the noise rather than by
the gradients in magnetic field and velocity (Figure 7).

Equation (2) shows that ∂I(λ)/∂λ can be used as a
calibration constant for the LOS magnetic field component.
To extend the wings of the observed Stokes profiles, we added

two more wavelength points at±1.8Å and extrapolated the
profiles at these points. Stokes profiles were also averaged over
0 23×0 23 (∼170 km) area in order to improve S/N. The
derivatives of Stokes I were then calculated with IDL’s built-in
deriv function for every pixel of the observed coronal loops.
Then, the best fit between the V(λ) and ∂I/∂λ is computed with
the least-square minimization technique. The fitting coefficient
directly gives the values for the magnetic field. The parameter
χ2 that characterizes the discrepancies (goodness-of-fit)
between Stokes V and the derivatives was also computed for
every pixel. Figure 7 (first and second columns) shows Stokes
V profiles from different parts of the observed coronal loops,
together with the WFA fits obtained from the derivative of
Stokes I (overplotted as solid red lines). The first column of
Figure 7 shows the results for lower χ2 (<1) and the second
column shows the results with higher χ2 (∼1–4).
Figure 8(c) shows the resulting map of the LOS magnetic field,

across large regions of the loop system. The histograms in
Figure 8(d) are the distributions of the LOS magnetic field for
three different height ranges. BLOS of the loop apex region (layer

Figure 7. Column 1: observed Stokes V profiles (black dashed lines) in the pixels with the lowest noise level and goodness-of-fit χ2<1. The WFA fits obtained from
the derivative of Stokes I are depicted as solid red lines. Column 2: typical Stokes profiles with higher noise level and goodness-of-fit with  c1 42 . Column 3:
randomized Stokes V profiles presented in the column 1. The randomization degrades their WFA goodness-of-fit to  c1 42 . Column 4: histograms of the
magnetic field strength values derived with the WFA from the derivative of the randomized Stokes I and Stokes V presented in the third column. The vertical blue solid
line on each histogram indicates the values of BLOS computed with the WFA before randomization of the Stokes V and I. Error bars represent standard deviation values
from the 1500 randomization. Gaussian fits of the histograms are presented as the full black lines with the 95% confidence intervals (the vertical dashed lines).
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1, between 18 and 26Mm above the solar surface) ranges from 50
to 180 G with median 90 G. The corresponding values at mid-
heights (layer 2, 9 to 18Mm) are as high as 300G with a median
of 140G. The polarization signal of the loop legs in the lower part
of the FOV (layer 3, up to 9Mm) is very weak due to the
increased perpendicular orientation of the loop legs. Layer 3 is
also contaminated by a solar prominence associated with the flare,
lying along the LOS. The distribution of the LOS magnetic field
here shows two distinct peaks at 150 and 300 G.

Compared to the LOS component, it is more challenging to
compute the perpendicular component of the magnetic field with
the WFA fitting, as it is related to the total linear polarization,

which depends on the second derivative of Stokes I with respect
to wavelength (Equation (3)). The measured linear polarization
signals (Stokes Q and U) are noisy and could not be used to
estimate the component of the magnetic field that is perpendicular
to our LOS under the WFA limit (Equation (3)).

3.1.2. Influence of Spectral Sampling

L. Kleint & A. Sainz Dalda (2015, private communication)
have investigated the influence of the spectral sampling on the
WFA for the Ca II 8542Å line by synthesizing the line in Non-
local Thermodynamical Equilibrium (NLTE), with the NICOLE
inversion code (Socas-Navarro et al. 2015). They used different

Figure 8. Panels (a) and (b) show the SST images in the Ca II 8542 Å intensity (Stokes I) at line core and circular polarization (Stokes V ) at line wing for the flare
coronal loops at 16:28 UT, 22 minutes after the flare peak. Panels (c) and (d) show a map of the LOS magnetic field together with histogram showing the distribution
of the LOS magnetic fields for three different regions (1, 2, 3). An animation of panel (a) is available. The video duration is 10 s and it shows the flare image and the
scan across the line. The inset in the animation shows the line in velocity space.

(An animation of this figure is available.)
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Figure 9. Magnetic field values derived from the WFA for different spectral samplings for the synthetic Ca II 8542 Å data. The input fields are denoted by horizontal
dotted lines and the calculated values with the WFA are given by the various symbols (+: 50 G, diamond: 250 G, triangle: 500 G, box: 1000 G). The left panel shows
a purely vertical magnetic field, the middle panel a field with inclination 45° and the right panel a field with inclination 75° with respect to the solar surface, which
influences the errors of the derived values.

Figure 10. Scatter plot represented as a two-dimensional density map of the LOS magnetic field measured from the WFA of the initial, high-quality Stokes profiles vs.
the mean BLOS retrieved after the randomization test.

Figure 11. (a) Doppler map of the flaring coronal loops. (b) Composite of CRISP Ca II 8542±0.945 Å images. The color-coded arrows indicate direction and speed
of plasma flows. The numbers above the arrows indicate average viewing angles of the flow/magnetic loops with respect to the LOS direction. The color bars give
velocity in km s−1. (c) Time–distance diagram of Ca 8542±0.945 Å intensity along the outermost arrows in panel (b).
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input values (between 50 and 1000 G) for the LOS magnetic field
and computed synthetic profiles for different spectral sampling
(from 5 to 100mÅ), model atmospheres (VAL-C and HSRA),
and predefined inclinations. The BLOS was then computed with
the WFA and the results were compared to the original input
magnetic field values to estimate the influence of spectral
sampling on the WFA. Figure 9 shows that the difference
between input values and derived magnetic fields generally
increases when the spectral sampling increases for a kG field.
However, for fields �500G, there is a very good match between
them even for large spectral sampling. The BLOS derived in the
present work with the WFA are below 400G and the spectral
sampling of our data near the line core is 70mÅ. This suggests
that in locations with well-defined Stokes profiles with a good fit
between Stokes V and the derivative of Stokes I, the WFA
provides a very accurate measure of the magnetic field density,
with error smaller than 10%.

3.1.3. Uncertainty of the Measurement

A large fraction (20%) of the pixels selected for this analysis
and presented in the LOS magnetic map (Figure 8(c)) have
well-defined, regular, symmetric Stokes V profiles with χ2�1.
Examples of such profiles are presented in Figure 5 and the first
column of Figure 7. As it was discussed in Section 3.1.2, for
such profiles, the estimated error of the measured magnetic
field strength is less than 10%. Typical profiles with higher
noise level and hence higher goodness-of-fit (  c1 42 ) for
the WFA are shown in the second column of Figure 7. Profiles
with χ2>4 were ignored and are not included in the magnetic
field map (Figure 8). To estimate an influence of the noise on
the BLOS values derived by the WFA we performed
randomization tests. The method has been applied in the
following way: we chose the three best scans from our time
series in terms of spatial resolution. From each selected scan,
we chose the pixels with the Stokes V and I profiles with the
lowest noise level and lowest WFA goodness-of-fit ( c 12 ).
For these pixels, we applied artificial noise by using a
randomization of the Stokes V and I profiles and degraded
their WFA goodness-of-fit to  c1 42 . The third column of
Figure 7 shows the Stokes V profiles produced by such
randomization from the profiles presented in the first column of
Figure 7. The process is repeated 1500 times for each selected
pixel, producing a distribution of values for the LOS magnetic
field. The right column of Figure 7 shows the histograms of the
magnetic field values derived with the WFA after randomiza-
tion of Stokes V profiles with the lowest noise level (presented
in the left column of Figure 7). The vertical solid blue lines on

each histogram indicate the values of BLOS computed with the
WFA before randomization of the Stokes V and I.
The left panel of Figure 10 shows the density map of the

LOS magnetic field measured from the WFA of the initial,
high-quality Stokes profiles versus the mean, BMean retrieved
after the randomization test. The right panel of Figure 10 shows
that the relative error of the BMean compared to the original
BLOS obtained from the WFA is around 5%. This suggests that
the upper limit of the uncertainty of the LOS magnetic field
derived from the WFA for the profiles with goodness-of-fit
 c1 42 should be close to the 2σ uncertainty ranges,

which is less than 30% of BMean (Figure 7).

3.2. Velocity Map

The line profiles are fitted with Gaussian functions to
determine the bulk plasma LOS velocity (Figure 11(a)). Most
of the CRISP/Ca II 8542Å line profiles are well-defined, single
peaked emission profiles. However, many pixels (∼40%) of the
coronal loops in the CHROMIS/Ca K and H and Hβ lines have
irregular, noisy profiles, and they cannot be fitted reliably with
a single Gaussian. As CHROMIS covers the shorter wave-
lengths, it is more susceptible to seeing conditions compared to
CRISP, and changes in atmospheric seeing during the scan time
of spectral lines has affected the quality of some of the
CHROMIS data. The Doppler velocities measured for
the pixels with the well-defined profiles in CHROMIS lines
are consistent with the velocities obtained from the CRISP Ca II
8542Å line indicating the reliability of the measurements.
Mapping this value (Dopplergrams) reveals that the left and
right parts of the loop structures contain regions of red and
blueshifted profiles, respectively, with velocities between
∼10–35 km s−1 (Figure 11(a)). Time–distance diagrams show
strong gravity-driven downflows of dense and cool plasma
from the loop apex toward the footpoints. These apparent plane
of sky (POS) velocities range between 50 and 100 km s−1

(Figures 11(b) and (c)). The apparent and Doppler velocities
are almost zero near the loop apex and increase toward the
footpoints (Figures 11(b) and (c)). These velocities are the two
orthogonal—LOS (VLOS, Dopplergrams) and POS (VPOS,
apparent) components of the downflowing plasma motions
with respect to the observer.
We note that line profiles of bright loop top seen in Ca II and

Hβ images (Figures 3, 4, 8, 11(b)) have a very strong central
reversal. This bright top is formed through the accumulation of
evaporated plasma, and it can have higher density and optical
depth compared to loop legs, which explains why its line
profiles show a central reversal (Kuridze et al. 2015,
2016, 2017). We will investigate the density structure of this
loop top and formation of central reversal in the follow-up
study.
As we mentioned above, the loop footpoints are no longer

visible because they have rotated to the far side of the Sun.
However, the downflows from the loop apex toward the
footpoints produce blueshifts above the rightmost footpoint and
redshift above the leftmost footpoint (Figure 11(a)). This
suggests that the right-hand footpoint is located nearer to an
observer. The measured BLOS is negative everywhere along the
loops, suggesting that the left footpoint of this arcade has
positive polarity and right one has negative.

Figure 12. Schematic representation of the magnetic loop showing the basic
geometry, magnetic field vector and its LOS and perpendicular components
with respect to the observer.
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3.3. Magnetic Flux Density

Since the moving plasma must obey Alfvén’s theorem on the
scales observed (i.e., be frozen in loops or perhaps in sheets
separating them), the direction of flow velocity follows the
direction of the magnetic loops. The viewing angle, γ, of the
magnetic field and velocity with respect to the observer,
(Figure 12), can be determined from the ratio between the LOS
and perpendicular components of either the magnetic field or
velocity vectors. In contrast to the LOS component, it is
impossible with given noise levels to compute the perpendicular
component of the magnetic field with the WFA fitting as it is
related to the total linear polarization, which depends on the
second derivative of Stokes I (see Equation (3)). The measured
linear polarization signals are noisy and cannot be used to estimate
the field component that is perpendicular to our LOS. The ratio of
VPOS/VLOS at different parts of the loop system ranges between
1.7 and 4, showing that the dominant component of the downflow

motion and hence the magnetic field is the component
perpendicular to the LOS (Figures 11(b) and 12). The average
viewing angle of the velocity vectors computed from these ratios
is approximately γ≈60–80 degrees (Figures 11(b) and 12). This
yields a median of total magnetic flux density, BTOT∼BLOS/cosγ
(Figure 12), of around 350G at the apex of the loop system
(region 1 in Figure 8(c)), and 420G at mid-heights (region 2 in
Figure 8(c)).

4. Discussion and Conclusion

Here we present two-dimensional (2D) maps of the magnetic
field of a full coronal-loop system using chromospheric
spectropolarimetry with unprecedented spatiotemporal resolu-
tion. This is a unique observation with its associated results for
the following reasons: (i) the flare took place when the AR was
at the West limb, a vantage position that allowed us to see the
plasma rise from the chromosphere to coronal heights; (ii) we

Figure 13. Same as Figure 8 obtained 5 minutes later at 16:33 UT.
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were able to overcome the challenges posed by the weak signal
of coronal lines by using a chromospheric diagnostic at coronal
heights; (iii) our observations and magnetic field measurements
achieved an unprecedented spatial (∼170 km) and temporal
(∼16 s) resolution up to a height of 25Mm into the corona; (iv)
the high signal allows us to apply the WFA, which is
straightforward and does not involve elaborate assumptions or
modeling. Yet it provides an accurate estimate of the coronal
magnetic field.

Our analysis reveals coronal magnetic field strengths as
high as 350 G at heights up to 25 Mm above the solar limb.
These values are considerably higher than previous estimates
for the coronal field obtained with low-resolution spectro-
polarimetry and coronal magnetoseismology (Lin et al. 2000,
2004; Nakariakov & Verwichte 2005; Tomczyk et al. 2007).
To estimate the effect of spatial and temporal resolution on the
measurement of the magnetic field we degraded our data to
1 5 and repeated the measurements. Compared to the original

high-resolution data, the LOS magnetic flux density is
underestimated by ∼70%–80% along different parts of the
loops, which partly explains the low values reported in
previous works.
The temporal evolution of the magnetic field maps shows no

significant changes over the 30-minute period (between 16:28
and 16:45 UT) (Figures 8, 13, and 14), indicating that the loops
remain stable even in the aftermath of a large flare, and despite
the large mass flux along the loops. We note that a
complementary study using white light data from the HMI
instrument on board SDO shows that the density of these post
flare loops are around 1013cm−3 (Jejčič et al. 2018) which is
almost two orders of magnitude higher than typical coronal-
loop densities (Young et al. 2009).
This first high-resolution measurement of the magnetic field

strength of solar coronal loops represents a major step forward in
understanding coronal magnetism. The observations and analy-
sis prove that, under certain circumstances, the high-resolution

Figure 14. Same as Figures 8 and 13 just at 16:45 UT.
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spectropolarimetry of the Ca II 8542Å line gives an accurate
measure of the coronal field. This constraint is crucial for
physical models of coronal ARs, flares and eruptions, and
provides a validation of widely used numerical methods for the
extrapolation of photospheric magnetic fields in the corona.
Furthermore, the result is important for upcoming new-
generation ground-based solar telescopes such as 4 m Daniel
K. Inouye Solar Telescope (DKIST) and European Solar
Telescope (EST; first lights in 2020 and 2027, respectively).
These telescopes will have advanced chromospheric polarimetric
capabilities, which, as demonstrated here, can provide powerful
diagnostics for the coronal magnetic field.
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