455 research outputs found

    Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men

    Get PDF
    Background. There is a need for early markers to track and predict the development of type 2 diabetes mellitus (T2DM) from the state of normal glucose tolerance through prediabetes. In this study we tested whether the plasma molecular lipidome has biomarker potential to predicting the onset of T2DM. Methods. We applied global lipidomic profiling on plasma samples from well-phenotyped men (107 cases, 216 controls) participating in the longitudinal METSIM study at baseline and at five-year follow-up. To validate the lipid markers, an additional study with a representative sample of adult male population (n = 631) was also conducted. A total of 277 plasma lipids were analyzed using the lipidomics platform based on ultra performance liquid chromatography coupled to time-of-flight mass spectrometry. Lipids with the highest predictive power for the development of T2DM were computationally selected, validated and compared to standard risk models without lipids. Results. A persistent lipid signature with higher levels of triacylglycerols and diacyl-phospholipids as well as lowerlevels of alkylacyl phosphatidylcholines was observed in progressors to T2DM. Lysophosphatidylcholine acyl C18:2 (LysoPC(18:2)), phosphatidylcholines PC(32:1), PC(34:2e) and PC(36:1), and triacylglycerol TG(17:1/18:1/18:2) were selected to the full model that included metabolic risk factors and FINDRISC variables. When further adjusting for BM and age, these lipids had respective odds ratios of 0.32, 2.4, 0.50, 2.2 and 0.31 (all p 0; p <0.05). Notably, the lipid models remained predictive of the development of T2DM in the fasting plasma glucose-matched subset of the validation study. Conclusion. This study indicates that a lipid signature characteristic of T2DM is present years before the diagnosis and improves prediction of progression to T2DM. Molecular lipid biomarkers were shown to have predictive power also in a high-risk group, where standard risk factors are not helpful at distinguishing progressors from non-progressors. (C) 2017 The Authors. Published by Elsevier Inc.Peer reviewe

    Machine Learning Reveals Time-Varying Microbial Predictors with Complex Effects on Glucose Regulation

    Get PDF
    The incidence of type 2 diabetes (T2D) has been increasing globally, and a growing body of evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded by a long prediabetic state characterized by changes in various metabolic parameters. We tested whether the gut microbiome could have predictive potential for T2D development during the healthy and prediabetic disease stages. We used prospective data of 608 well-phenotyped Finnish men collected from the population-based Metabolic Syndrome in Men (METSIM) study to build machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5 year) and longer (4 year) period. Our results show that the inclusion of the gut microbiome improves prediction accuracy for modeling T2D-associated parameters such as glycosylated hemoglobin and insulin measures. We identified novel microbial biomarkers and described their effects on the predictions using interpretable machine learning techniques, which revealed complex linear and nonlinear associations. Additionally, the modeling strategy carried out allowed us to compare the stability of model performance and biomarker selection, also revealing differences in short-term and long-term predictions. The identified microbiome biomarkers provide a predictive measure for various metabolic traits related to T2D, thus providing an additional parameter for personal risk assessment. Our work also highlights the need for robust modeling strategies and the value of interpretable machine learning.IMPORTANCE Recent studies have shown a clear link between gut microbiota and type 2 diabetes. However, current results are based on cross-sectional studies that aim to determine the microbial dysbiosis when the disease is already prevalent. In order to consider the microbiome as a factor in disease risk assessment, prospective studies are needed. Our study is the first study that assesses the gut microbiome as a predictive measure for several type 2 diabetes-associated parameters in a longitudinal study setting. Our results revealed a number of novel microbial biomarkers that can improve the prediction accuracy for continuous insulin measures and glycosylated hemoglobin levels. These results make the prospect of using the microbiome in personalized medicine promising

    The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases

    Get PDF
    The Metabolic Syndrome in Men (METSIM) study is a population-based study including 10,197 Finnish men examined in 2005–2010. The aim of the study is to investigate nongenetic and genetic factors associated with the risk of T2D and CVD, and with cardiovascular risk factors. The protocol includes a detailed phenotyping of the participants, an oral glucose tolerance test, fasting laboratory measurements including proton NMR measurements, mass spectometry metabolomics, adipose tissue biopsies from 1,400 participants, and a stool sample. In our ongoing follow-up study, we have, to date, reexamined 6,496 participants. Extensive genotyping and exome sequencing have been performed for essentially all METSIM participants, and >2,000 METSIM participants have been whole-genome sequenced. We have identified several nongenetic markers associated with the development of diabetes and cardiovascular events, and participated in several genetic association studies to identify gene variants associated with diabetes, hyperglycemia, and cardiovascular risk factors. The generation of a phenotype and genotype resource in the METSIM study allows us to proceed toward a “systems genetics” approach, which includes statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein, or metabolite levels, to provide a global view of the molecular architecture of complex traits

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights
    corecore