67 research outputs found

    Cartridge Methods for Oligonucleotide Purification

    Full text link
    Protocols are given for purification of oligonucleotides by dimethoxytrityl‐sensitive and affinity desalting methods. The protocols are applicable for many of the convenient disposable products available for rapid oligonucleotide purification, clean‐up by selective adsorption, and elution on solid‐phase media. Many of these products are prepackaged, single‐use cartridges or columns filled with affinity or size‐exclusion media.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152627/1/cpnc1007.pd

    Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip

    Get PDF
    The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing

    Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip

    Get PDF
    The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing

    tRNA structural and functional changes induced by oxidative stress

    Get PDF
    Oxidatively damaged biomolecules impair cellular functions and contribute to the pathology of a variety of diseases. RNA is also attacked by reactive oxygen species, and oxidized RNA is increasingly recognized as an important contributor to neurodegenerative complications in humans. Recently, evidence has accumulated supporting the notion that tRNA is involved in cellular responses to various stress conditions. This review focuses on the intriguing consequences of oxidative modification of tRNA at the structural and functional level

    Functional Divergence among Silkworm Antimicrobial Peptide Paralogs by the Activities of Recombinant Proteins and the Induced Expression Profiles

    Get PDF
    Antimicrobial peptides are small-molecule proteins that are usually encoded by multiple-gene families. They play crucial roles in the innate immune response, but reports on the functional divergence of antimicrobial peptide gene families are rare. In this study, 14 paralogs of antimicrobial peptides belonging to cecropin, moricin and gloverin families were recombinantly expressed in pET expression systems. By antimicrobial activity tests, peptides representing paralogs in the same family of cecropin and moricin families, displayed remarkable differences against 10 tested bacteria. The evolutionary rates were relatively fast in the two families, which presented obvious functional divergence among paralogs of each family. Four peptides of gloverin family had similar antimicrobial spectrum and activity against tested bacteria. The gloverin family showed similar antimicrobial function and slow evolutionary rates. By induced transcriptional activity, genes encoding active antimicrobial peptides were upregulated at obviously different levels when silkworm pupae were infected by three types of microbes. Association analysis of antimicrobial activities and induced transcriptional activities indicated that the antimicrobial activities might be positively correlated with induced transcriptional activities in the cecropin and moricin families. These results suggest that representative BmcecB6, BmcecD and Bmmor as the major effector genes have broad antimicrobial spectrum, strong antimicrobial activity and high microbe-induced expression among each family and maybe play crucial roles in eliminating microbial infection

    Design, synthesis, and analysis of conformationally constrained nucleic acids

    Full text link
    In this review I discuss straightforward and general methods to modify nucleic acid structure with disulfide cross-links. A motivating factor in developing this chemistry was the notion that disulfide bonds would be excellent tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide cross-linked hairpins and duplexes, higher order structures like triplexes, nonground-state conformations, and tRNAs. Since the cross-links form quantitatively by mild air oxidation and do not perturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids. © 1998 John Wiley & Sons, Inc. Biopoly 48: 83–96, 1998Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37876/1/8_ftp.pd

    Base Composition Analysis of Nucleosides Using HPLC

    Full text link
    In this protocol, nuclease digestion of an oligonucleotide is followed by dephosphorylation and HPLC analysis of the monomers on a reversed‐phase C18 column. This method can be used to detect and quantitate a wide variety of nucleobase modifications in oligonucleotides. Integrated areas of the nucleoside chromatogram give precise quantitation of nucleoside composition when the relative extinction coefficient cofactors are applied to the sum of the areas of the four bases. The protocol is also useful for analysis of oligonucleotides containing conjugated moieties and carbohydrate modifications.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152749/1/cpnc1006.pd
    corecore