377 research outputs found

    Recreation reduces tick density through fine-scale risk effects on deer space-use

    Get PDF
    Altered interactions between pathogens, their hosts and vectors have potential consequences for human disease risk. Notably, tick-borne pathogens, many of which are associated with growing deer abundance, show global increasing prevalence and pose increasing challenges for disease prevention. Human activities can largely affect the patterns of deer space-use and can therefore be potential management tools to alleviate human-wildlife conflicts. Here, we tested how deer space-use patterns are influenced by human recreational activities, and how this in turn affects the spatial distribution of the sheep tick (Ixodes ricinus), a relevant disease vector of zoonoses such as Lyme borrelioses. We compared deer dropping and questing tick density on transects near (20 m) and further away from(100 m) forest trails that were either frequently used (open for recreation) or infrequently used (closed for recreation, but used by park managers). In contrast to infrequently used trails, deer dropping density was 31% lower near (20 m) than further away from (100 m) frequently used trails. Similarly, ticks were 62% less abundant near (20 m) frequently used trails compared to further away from (100 m) these trails, while this decline in tick numbers was only 14% near infrequently used trails. The avoidance by deer of areas close to human-used trails was thus associated with a similar reduction in questing tick density near these trails. As tick abundance generally correlates to pathogen prevalence, the use of trails for recreation may reduce tick-borne disease risk for humans on and near these trails. Our study reveals an unexplored effect of human activities on ecosystems and how this knowledge could be potentially used to mitigate zoonotic disease risk

    Recreation reduces tick density through fine-scale risk effects on deer space-use

    Get PDF
    Altered interactions between pathogens, their hosts and vectors have potential consequences for human disease risk. Notably, tick-borne pathogens, many of which are associated with growing deer abundance, show global increasing prevalence and pose increasing challenges for disease prevention. Human activities can largely affect the patterns of deer space-use and can therefore be potential management tools to alleviate human-wildlife conflicts. Here, we tested how deer space-use patterns are influenced by human recreational activities, and how this in turn affects the spatial distribution of the sheep tick (Ixodes ricinus), a relevant disease vector of zoonoses such as Lyme borrelioses. We compared deer dropping and questing tick density on transects near (20 m) and further away from (100 m) forest trails that were either frequently used (open for recreation) or infrequently used (closed for recreation, but used by park managers). In contrast to infrequently used trails, deer dropping density was 31% lower near (20 m) than further away from (100 m) frequently used trails. Similarly, ticks were 62% less abundant near (20 m) frequently used trails compared to further away from (100 m) these trails, while this decline in tick numbers was only 14% near infrequently used trails. The avoidance by deer of areas close to human-used trails was thus associated with a similar reduction in questing tick density near these trails. As tick abundance generally correlates to pathogen prevalence, the use of trails for recreation may reduce tick-borne disease risk for humans on and near these trails. Our study reveals an unexplored effect of human activities on ecosystems and how this knowledge could be potentially used to mitigate zoonotic disease risk

    Fires at Neumark-Nord 2, Germany: An analysis of fire proxies from a Last Interglacial Middle Palaeolithic basin site

    Get PDF
    Few sites with evidence for fire use are known from the Last Interglacial in Europe. Hearth features are rarely preserved, probably as a result of post-depositional processes. The small postglacial basins (<300 m in diameter) that dominate the sedimentary context of the Eemian record in Europe are high-resolution environmental archives often containing charcoal particles. This case study presents the macroscopic charcoal record of the Neumark-Nord 2 basin, Germany, and the correlation of this record with the distinct find levels of the basin margin that also contain thermally altered archaeological material. Increased charcoal quantities are shown to correspond to phases of hominin presence-a pattern that fits best with recurrent anthropogenic fires within the watershed. This research shows the potential of small basin localities in the reconstruction of local fire histories, where clear archaeological features like hearths are missing

    a pilot study, 2013

    Get PDF
    Introduction After recognition of European outbreaks of Clostridium difficile infections (CDIs) associated with the emergence of PCR ribotype 027/NAP1 in 2005, CDI surveillance at country level was encouraged by the European Centre for Disease Prevention and Control (ECDC) [1]. In 2008, an ECDC-supported European CDI survey (ECDIS) identified large intercountry variations in incidence rates and distribution of prevalent PCR ribotypes, with the outbreak-related PCR ribotype 027 being detected in 5% (range: 0–26) of the characterised isolates [2]. The surveillance period was limited to one month and the representation of European hospitals was incomplete; however, this has been the only European (comprising European Union (EU)/European Economic Area (EEA) and EU candidate countries) CDI surveillance study. The authors highlighted the need for national and European surveillance to control CDI. Yet, European countries were found to have limited capacity for diagnostic testing, particularly in terms of standard use of optimal methods and absence of surveillance protocols and a fully validated, standardised and exchangeable typing system for surveillance and/or outbreak investigation. As of 2011, 14 European countries had implemented national CDI surveillance, with various methodologies [3]. National surveillance systems have since reported a decrease in CDI incidence rate and/or prevalence of PCR ribotype 027 in some European countries [4-8]. However, CDI generally remains poorly controlled in Europe [9], and PCR ribotype 027 continues to spread in eastern Europe [10-12] and globally [13]. In 2010, ECDC launched a new project, the European C. difficile Infection Surveillance Network (ECDIS-Net), to enhance surveillance of CDI and laboratory capacity to test for CDI in Europe. The goal of ECDIS- Net was to establish a standardised CDI surveillance protocol suitable for application all over Europe in order to: (i) estimate the incidence rate and total infection rate of CDI (including recurrent CDI cases) in European acute care hospitals; (ii) provide participating hospitals with a standardised tool to measure and compare their own incidence rates with those observed in other participating hospitals; (iii) assess adverse outcomes of CDI such as complications and death; and (iv) describe the epidemiology of CDI concerning antibiotic susceptibility, PCR ribotypes, presence of tcdA, tcdB and binary toxins and detect new emerging types at local, national and European level. The primary objectives of the present study were to: (i) test the pilot protocol for the surveillance of CDI in European acute care hospitals developed by ECDIS-Net (methodology, variables and indicators); (ii) assess the feasibility and workload of collecting the required hospital data, case- based epidemiological and microbiological data; and (iii) evaluate the quality of data collected, whether in the presence or absence of existing national CDI surveillance activities. A secondary aim was to assess the relationship between patient and microbiological characteristics and in-hospital outcome of CDI to confirm the added value of collecting detailed epidemiological and microbiological data on CDI at European level

    Clostridium difficile is not associated with outbreaks of viral gastroenteritis in the elderly in the Netherlands

    Get PDF
    The coincidental increase in norovirus outbreaks and Clostridium difficile infection (CDI) raised the question of whether these events could be related, e.g. by enhancing spread by diarrhoeal disease outbreaks. Therefore, we studied the prevalence of C. difficile in outbreaks of viral gastroenteritis in nursing homes for the elderly and characterised enzyme immunoassay (EIA)-positive stool samples. Stool samples from nursing home residents (n = 752) in 137 outbreaks of viral aetiology were investigated by EIA for the presence of C. difficile toxins. Positive samples were further tested by a cell neutralisation cytotoxicity test, a second EIA and culture. Cultured isolates were tested for the presence of toxin genes, the production of toxins and characterised by 16S rRNA polymerase chain reaction (PCR) and sequencing. Twenty-four samples (3.2%) tested positive in the EIA. Of these 24 positive samples, only two were positive by cytotoxicity and three by a second EIA. Bacterial culture of 21 available stool samples yielded a toxinogenic C. difficile PCR ribotype 001 in one patient sample only. In conclusion, we found no evidence in this retrospective study for an association between viral gastroenteritis outbreaks and C. difficile. The high rate of false-positive EIA samples emphasises the need for second confirmation tests to diagnose CDI

    Standardised surveillance of Clostridium Difficile Infection in European acute care hospitals: A pilot study, 2013

    Get PDF
    Clostridium difficile infection (CDI) remains poorly controlled in many European countries, of which several have not yet implemented national CDI surveillance. In 2013, experts from the European CDI Surveillance Network project and from the European Centre for Disease Prevention and Control developed a protocol with three options of CDI surveillance for acute care hospitals: a ‘minimal’ option (aggregated hospital data), a ‘light’ option (including patient data for CDI cases) and an ‘enhanced’ option (including microbiological data on the first 10 CDI episodes per hospital). A total of 37 hospitals in 14 European countries tested these options for a three-month period (between 13 May and 1 November 2013). All 37 hospitals successfully completed the minimal surveillance option (for 1,152 patients). Clinical data were submitted for 94% (1,078/1,152) of the patients in the light option; information on CDI origin and outcome was complete for 94% (1,016/1,078) and 98% (294/300) of the patients in the light and enhanced options, respectively. The workload of the options was 1.1, 2.0 and 3.0 person-days per 10,000 hospital discharges, respectively. Enhanced surveillance was tested and was successful in 32 of the hospitals, showing that C. difficile PCR ribotype 027 was predominant (30% (79/267)). This study showed that standardised multicountry surveillance, with the option of integrating clinical and molecular data, is a feasible strategy for monitoring CDI in Europe

    Ventilator-associated pneumonia in children after cardiac surgery in The Netherlands

    Get PDF
    We conducted a retrospective cohort study in an academic tertiary care center to characterize ventilator-associated pneumonia (VAP) in pediatric patients after cardiac surgery in The Netherlands. All patients following cardiac surgery and mechanically ventilated for ≥24 h were included. The primary outcome was development of VAP. Secondary outcomes were duration of mechanical ventilation and length of ICU stay. A total of 125 patients were enrolled. Their mean age was 16.5 months. The rate of VAP was 17.1/1,000 mechanical ventilation days. Frequently found organisms were Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Pseudomonas aeruginosa. Patients with VAP had longer duration of ventilation and longer ICU stay. Risk factors associated with the development of VAP were a PRISM III score of ≥10 and transfusion of fresh frozen plasma. The mean VAP rate in this population is higher than that reported in general pediatric ICU populations. Children with VAP had a prolonged need for mechanical ventilation and a longer ICU sta

    Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    Get PDF
    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground–belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant–soil–vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground–belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground–belowground interactions for small-scale plant community composition
    corecore