206 research outputs found

    Q-Value and Half-Lives for the Double-Beta-Decay Nuclide 110Pd

    Full text link
    The 110Pd double-beta decay Q-value was measured with the Penning-trap mass spectrometer ISOLTRAP to be Q = 2017.85(64) keV. This value shifted by 14 keV compared to the literature value and is 17 times more precise, resulting in new phase-space factors for the two-neutrino and neutrinoless decay modes. In addition a new set of the relevant matrix elements has been calculated. The expected half-life of the two-neutrino mode was reevaluated as 1.5(6) E20 yr. With its high natural abundance, the new results reveal 110Pd to be an excellent candidate for double-beta decay studies

    Ground-State Electromagnetic Moments of Calcium Isotopes

    Get PDF
    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the 43−51^{43-51}Ca isotopes. The ground state magnetic moments of 49,51^{49,51}Ca and quadrupole moments of 47,49,51^{47,49,51}Ca were measured for the first time, and the 51^{51}Ca ground state spin I=3/2I=3/2 was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the 40^{40}Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review

    Spins, Electromagnetic Moments, and Isomers of 107-129Cd

    Full text link
    The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell

    Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    Full text link
    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data

    Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K

    Get PDF
    The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.Comment: 5 pages, 5 figure

    Calculation of electrostatic fields using quasi-Green's functions: application to the hybrid Penning trap.

    Get PDF
    Penning traps offer unique possibilities for storing, manipulating and investigating charged particles with high sensitivity and accuracy. The widespread applications of Penning traps in physics and chemistry comprise e.g. mass spectrometry, laser spectroscopy, measurements of electronic and nuclear magnetic moments, chemical sample analysis and reaction studies. We have developed a method, based on the Green's function approach, which allows for the analytical calculation of the electrostatic properties of a Penning trap with arbitrary electrodes. The ansatz features an extension of Dirichlet's problem to nontrivial geometries and leads to an analytical solution of the Laplace equation. As an example we discuss the toroidal hybrid Penning trap designed for our planned measurements of the magnetic moment of the (anti)proton. As in the case of cylindrical Penning traps, it is possible to optimize the properties of the electric trapping fields, which is mandatory for high-precision experiments with single charged particles. Of particular interest are the anharmonicity compensation, orthogonality and optimum adjustment of frequency shifts by the continuous SternGerlach effect in a quantum jump spectrometer. The mathematical formalism developed goes beyond the mere design of novel Penning traps and has potential applications in other fields of physics and engineering
    • 

    corecore