175 research outputs found
Community As Client: Defining Social Design As A Means Of Designing For Good
Approaching the design field today is a significant quantity of societal needs that have potential to be resolved through systematic design initiatives. There is increasing curiosity around the designer\u27s role and responsibility within society; a belief that designers have the power to make social change happen in their own communities. Many neighborhoods with driven community members and professional designers are working together to turn to design as problem solving, as social activism on a local scale. But how do we make this sustainable?
To create a systematic change, designers must rethink the processes in which they view the problems and work to solve them, thus working in a systems thinking approach I call the Community Design Ecosystem. Within the Community Design Ecosystem the client is no longer a singular recipient of the design services but rather the client is the community.
How can a local problem be sustainably resolved if the designer is only viewing the issue as an outsider? Due to the nature of the projects, this is one of the unique challenges of community driven design initiatives. By taking the time to walk in the shoes of those you are trying to help, designers are able to create with empathy. With location specific responsiveness, a collaborative design process within the community allows for sustainable long-term solutions for specific situations. This thesis will discuss the ways a shared agenda creates a universal conversation between designers and the effected communities
Larval Connectivity and the International Management of Fisheries
Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries
The Spatial Context of “Winning” in MPA Network Design: Location Matters
(First paragraph) Chollett et al. (2017) make the case that a local network of marine protected areas (MPAs) enhances fisheries for Caribbean spiny lobster (Panulirus argus) off the coast of Honduras. However, their simulation focused on one ecoregion where self-recruitment is predicted to be among the highest in the Caribbean (Cowen, Paris, & Srinivasan, 2006). The shallow banks and scattered cays of the Honduran-Nicaraguan Rise, separating the Cayman and Colombian basins, create an obstacle to the powerful southern Caribbean jet (Richardson, 2005), fostering an ideal location for topographically steered eddies and larval retention. Local management,whether based on traditional techniques or MPAs, is indeed likely to be successful in sustaining the lobster population in that region. But the authors go too far in promoting local management based on a best-case scenario where the population is largely self recruiting, and they downplay the need for international cooperation in managing one of the most economically important species in the Caribbean (Kough, Paris, & Butler IV, 2013)
Functional classification of protein toxins as a basis for bioinformatic screening
Proteins are fundamental to life and exhibit a wide diversity of activities, some of which are toxic. Therefore, assessing whether a specific protein is safe for consumption in foods and feeds is critical. Simple BLAST searches may reveal homology to a known toxin, when in fact the protein may pose no real danger. Another challenge to answer this question is the lack of curated databases with a representative set of experimentally validated toxins. Here we have systematically analyzed over 10,000 manually curated toxin sequences using sequence clustering, network analysis, and protein domain classification. We also developed a functional sequence signature method to distinguish toxic from non-toxic proteins. The current database, combined with motif analysis, can be used by researchers and regulators in a hazard screening capacity to assess the potential of a protein to be toxic at early stages of development. Identifying key signatures of toxicity can also aid in redesigning proteins, so as to maintain their desirable functions while reducing the risk of potential health hazards
Biophysical connectivity explains population genetic structure in a highly dispersive marine species
© 2016 Springer-Verlag Berlin Heidelberg Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall FST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling
Go Shush Yourself: Student Habitus at the New Thompson Library
Poster with the results of a collaborative ethnographic
study of students' behavior in a university library. The study was conducted within the framework of the anthropology course 650H: Research Design and Ethnographic Methods (Autumn 2010) taught by Dr. Mark Morit
Tiger sharks support the characterization of the world’s largest seagrass ecosystem
Seagrass conservation is critical for mitigating climate change due to the large stocks of carbon they sequester in the seafloor. However, effective conservation and its potential to provide nature-based solutions to climate change is hindered by major uncertainties regarding seagrass extent and distribution. Here, we describe the characterization of the world’s largest seagrass ecosystem, located in The Bahamas. We integrate existing spatial estimates with an updated empirical remote sensing product and perform extensive ground-truthing of seafloor with 2,542 diver surveys across remote sensing tiles. We also leverage seafloor assessments and movement data obtained from instrument-equipped tiger sharks, which have strong fidelity to seagrass ecosystems, to augment and further validate predictions. We report a consensus area of at least 66,000 km and up to 92,000 km of seagrass habitat across The Bahamas Banks. Sediment core analysis of stored organic carbon further confirmed the global relevance of the blue carbon stock in this ecosystem. Data from tiger sharks proved important in supporting mapping and ground-truthing remote sensing estimates. This work provides evidence of major knowledge gaps in the ocean ecosystem, the benefits in partnering with marine animals to address these gaps, and underscores support for rapid protection of oceanic carbon sinks
Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists
Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation
Isolation by oceanic distance and spatial genetic structure in an overharvested international fishery
© 2017 John Wiley & Sons Ltd Aim: A detailed understanding of spatial genetic structure (SGS) and the factors driving contemporary patterns of gene flow and genetic diversity are fundamental for developing conservation and management plans for marine fisheries. We performed a detailed study of SGS and genetic diversity throughout the overharvested queen conch (Lobatus gigas) fishery. Caribbean countries were presented as major populations to examine transboundary patterns of population differentiation. Location: Nineteen locations in the greater Caribbean from Anguilla, the Bahamas, Belize, Caribbean Netherlands, Honduras, Jamaica, Mexico, Turks and Caicos, and the USA. Methods: We genotyped 643 individuals with nine microsatellites. Population genetic and multivariate analyses characterized SGS. We tested the alternate hypotheses: (1) SGS is randomly distributed in space or (2) pairwise genetic structure among sites is correlated with oceanic distance (IBOD). Results: Our study found that L. gigas does not form a single panmictic population in the greater Caribbean. Significant levels of genetic differentiation were identified between Caribbean countries (FCT = 0.011; p =.0001), within Caribbean countries (FSC = 0.003; p =.001), and among sites irrespective of geographic location (FST = 0.013; p =.0001). Gene flow across the greater Caribbean was constrained by oceanic distance (p =.0009; Mantel r =.40), which acted to isolate local populations. Main conclusions: Gene flow over the spatial scale of the entire Caribbean basin is constrained by oceanic distance, which may impede the natural recovery of overfished L. gigas populations. Our results suggest a careful blend of local and international management will be required to ensure long-term sustainability for the species
- …