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Functional classification of protein 
toxins as a basis for bioinformatic 
screening
Surendra S. Negi1, Catherine H. Schein1,2, Gregory S. Ladics3, Henry Mirsky4, Peter Chang4, 
Jean-Baptiste Rascle5, John Kough6, Lieven Sterck  7, Sabitha Papineni8, Joseph M. Jez9, 
Lucilia Pereira Mouriès10 & Werner Braun1

Proteins are fundamental to life and exhibit a wide diversity of activities, some of which are toxic. 
Therefore, assessing whether a specific protein is safe for consumption in foods and feeds is critical. 
Simple BLAST searches may reveal homology to a known toxin, when in fact the protein may pose 
no real danger. Another challenge to answer this question is the lack of curated databases with a 
representative set of experimentally validated toxins. Here we have systematically analyzed over 
10,000 manually curated toxin sequences using sequence clustering, network analysis, and protein 
domain classification. We also developed a functional sequence signature method to distinguish 
toxic from non-toxic proteins. The current database, combined with motif analysis, can be used by 
researchers and regulators in a hazard screening capacity to assess the potential of a protein to be 
toxic at early stages of development. Identifying key signatures of toxicity can also aid in redesigning 
proteins, so as to maintain their desirable functions while reducing the risk of potential health hazards.

Most genetically engineered (GE) food crops involve expressing an introduced protein, thus assessing the safety 
of the protein is required before commercialization1–4. GE crops are created by introducing gene(s) from one 
species into a crop plant species to improve the nutritional value, yield, drought resistance, herbicide tolerance 
or pest resistance. Biotechnology companies screen new constructs early in the product development process in 
order to remove potential hazards and ensure the safety of their product pipelines. National and international 
regulatory agencies have established guidelines for assessing both trait and GE crop safety through a weight of 
evidence approach5–7. The US-FDA, EPA, USDA, or EFSA and other international organizations require scientif-
ically validated methods to ensure reliable results are generated that allow them to assess the safety of introduced 
proteins in GE crops.

In silico methods and webservers have been successfully developed to predict toxicity of small molecular 
weight compounds. These include the systems pharmacology approach8 to predict drug toxicity and the EPA 
ToxCast program9,10 to screen chemicals for potential toxicity to human and the environment. Similar broadly 
offered bioinformatics tools are not available to predict whether a protein poses the potential to have a toxic 
effect on mammals. One of the reasons is the absence of a comprehensive, publicly available database containing 
all proteins with experimentally verified toxic effects in humans or animal studies. Specific databases exist for 
animal toxins11,12, spider venoms13 and microbial pathogens14. Although the amino acid sequence determines 
the three-dimensional structure and the biochemical function of the protein, the specific determinants for the 
pathogenic effect are not known in many cases. Further, the amino acids that dictate toxic function may be 
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quite distant from one another in the linear sequence of the protein, but may be close together within the folded 
three-dimensional structures of the proteins. These residues may be also distributed on several protein domains, 
or even on different monomers in multidomain protein toxins.

The extensive data sets of amino acid sequences, three-dimensional structures, biochemical and biological 
functions of gene products in publicly available databases can be the basis for bioinformatics approaches to deter-
mine the potential risk of toxicity. Proper cataloguing of this data, by discriminating the small proportion of 
proteins that are known toxins, is one part of an overall “weight-of-evidence” evaluation for the safety of GE 
products4,5,15,16. Here we document the first steps to establish a bioinformatics strategy for evaluating the toxic 
potential of a protein. Beginning with a manually curated list obtained through a keyword search, over 10,000 
protein sequences were grouped based on their sequence identity, and then according to their similarity to pro-
tein families as classified in the PFAM database17. The clustering was automatically performed by a series of 
independent single linkage clustering with varying thresholds for sequence identities and the top 100 clusters 
manually inspected for common biochemical and physiological functions. In addition, for all toxin entries pro-
tein domains were assigned to PFAM classes. Both procedures indicated that there are only a limited number 
(< 400) of potential mechanisms for protein toxicity. The current list is a starting point for a relational database of 
protein toxins for hazard screening. We show further that sequence alignments of the clustered toxins can estab-
lish structural and sequential motifs18–20 for use in distinguishing toxins from their non-toxic homologues in the 
same PFAM class. Extending this classification and motif analysis to all known toxic proteins can aid in identify-
ing possible mechanisms of toxicity during the first tier of hazard screening, and prevent potentially problematic 
proteins from entering the developmental pipeline.

Results
Selection of a representative set of toxin sequences. We began with a curated list of proteins whose 
signatures contained one of a selected series of key words that indicated protein toxicity (Fig. 1). The list was 
simplified by removing duplicates, putative or synthetic constructs, and by adding missing sequences catalogued 
in existing toxin databases, such as that maintained by the EPA (see materials and methods). The final list of the 
toxins contained 10,389 protein sequences. Sequence clustering and analysis is described in the Methods section.

About 400 clusters at the 35% sequence identity level contain most protein toxins. To exam-
ine the sequence variability of the extracted ~10,000 protein toxins, we generated clusters with cutoff levels at 
5% intervals and manually analyzed the most populated individual clusters at the 95%, 65% and 35% sequence 
identity levels. Clusters at the 95% level were used to identify and remove highly redundant toxin sequences. 
Sequences with 35% identity can be generally considered to have similar 3D-structures21–23. This observation of 
structural similarity has been confirmed in many cases by the results of Protein Structure Initiative of the NIH24,25.

However, functional similarity cannot be easily deduced from a simple sequence similarity cutoff. Even pro-
teins that are very similar in both sequences and structures may have completely different functions, whereby 
only one group is toxic. We therefore used here an empirical approach with a varying sequence identity level to 
learn about the cluster properties of known protein toxins. The number of clusters decreased from a high of 6,295 
at 95% to 3,562 at 65% sequence identity, and to 2,375 when grouped at 35% identity. The 335 most populated 

Figure 1. Workflow for selecting potential toxin sequences included in the database. Different selection of 
keywords were combined to provide a broad coverage of toxins.
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clusters at the 35% identity level contain about 80% of the protein toxins (Fig. 2a). The rest of the toxins formed 
very small clusters or were unique sequences at this cut-off level.

Annotations may distinguish members within a cluster that are functionally related. Not sur-
prisingly, the most closely related proteins in the most populated clusters had similar functions, although the 
annotations in the NCBI entry data files were sometimes quite different. For example, the highly similar proteins 
in the second highest populated cluster were called Shiga toxin 2 A or verocytotoxin 2 (Table S1), whereby both 
terms indicate similar activity. Analysis of the clustering at 65% and 35% identity indicated that although the 

Figure 2. Cluster and network analysis of protein toxin sequences: (a) Toxin sequences in each of the 35% 
sequence identity clusters are shown. Most sequences were contained in about 442 clusters. (b) Relation of a 
cluster at the 95% sequence identity level (indicated by Axxxx) to larger clusters at 35% sequence identity level. 
The example shows a 35% cluster of conotoxin sequences (G13) composed of multiple 95% clusters.
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clusters were progressively larger, they still represented relatively homogeneous groups of proteins. For example 
all of the 394 entries in the top cluster at 35% identity are conotoxins (Table S2).

Functional relations of toxins within clusters. Comparison of the most populated clusters of bacterial 
toxins at the 35% sequence identity showed that our clustering was consistent with functional annotation. We 
manually analyzed the bacterial toxins in the top 100 clusters at 65% and 35% identity (Table S3). All toxins 
within the same 35% cluster were functionally related, despite diverse nomenclature used in the NCBI annota-
tions. Proteins with similar annotations that clustered independently at 35% also often had biologically distinct 
functions. We thus undertook further analysis with PFAM, as discussed below.

Hierarchical relation between clusters at different sequence identity levels. To illustrate the rela-
tionship between the clusters at 95% and those at 65% or 35% sequence identity level, we used a network analysis. 
Each cluster at different sequence identity threshold was represented by a group ID, and the relationships between 
these groups were visualized using Cytoscape26 (Fig. 2b). Comparison of these networks at different sequence 
identity levels showed that the larger clusters at 35% represent toxins within the same protein family or protein 
superfamily. We thus suggest that the 35% sequence identity level represents a good choice for a functional group-
ing of the toxins, and the 95% levels can be used to resolve nomenclature issues.

Unique sequences are short or partial sequences. Manual analysis of the clusters with only one 
sequence indicated that the overwhelming majority of those singlet sequences were fragments of whole tox-
ins that were contained with high sequence identity in a larger cluster. For example, cluster number 4 at the 
35% identity level contains 281 cytotoxin-associated proteins. Three singlet sequences could be aligned with 
the N-terminal of these sequences, but were too short to make the 35% cutoff for identity with the whole, much 
longer sequences within the cluster (Fig. 3). Thus, we can assign those entries manually to cluster 4.

The functional diversity of toxins is dramatically restricted. Most bacterial toxins are multidomain 
proteins, where only one domain may contain the enzymatic region responsible for their detrimental effects. 

Figure 3. Most of the 1600 singlet sequences can be related to highly populated clusters using multiple 
sequence alignments. For example, the first sequence is a cytotoxin associated protein from Heliobacter plyori 
included in cluster 4, the other three are from different clusters with only one sequence. Those sequences are 
almost identical to the first sequence, but contain deletions from 69 to 105, or at the C-termini.

http://S2
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Other toxins form oligomeric assemblies that form membrane pores or need specific protein receptors or lipids 
to initiate the oligomerization process27. Sequence similarity classification alone will thus be misleading for many 
proteins. Thus the database was further organized according to functional domains, using the PFAM classifi-
cation28,29. Here, toxin identity to discrete areas in the protein known to be responsible for a given function is 
more important than absolute overall sequence similarity. In addition to expert curation of well-studied proteins, 
PFAM uses a Hidden Markov Model (HMM) approach, whereby patterns of amino acids in parts of the sequence 
can reveal similar function. Most of the toxins in the database could be automatically classified by the HMMER 
software30 according to the PFAM classification of their domains.

The automated search with HMMER assigned 8570 toxins in the database to only 381 different protein 
domains out of 16,295 annotated domains in the PFAM database. For the remaining toxins we could manually 
assign about 500 entries within the same list of protein domains by association, based on their 35 or 65% iden-
tity to assigned sequences within the same clusters. This result is also consistent with our cluster analysis at the 
35% level, where < 400 clusters accounted for most of the sequences. The functional building blocks of toxins 
thus come only from a limited subset of domains generally found in proteins. The functional domains found in 
the protein sequences correspond to less than 3% of the 16,295 annotated domains in the PFAM database. The 
number of sequences in the database in each PFAM domain is highly variable (Fig. 4). Also consistent with the 
cluster analysis, the most populated PFAM domains are from vacuolating cytotoxins, conotoxins, snake, scorpion 
and bacterial toxins. This list of PFAM domains and the associated HMM profiles could be a starting point to 
find more related toxins in public databases when used with selected keywords. A complete list of all 381 PFAM 
domains is given as supplementary material (Table S4).

Domain structures of toxins are critical for their function. The PFAM analysis clarifies the functional 
diversity of the large, multidomain proteins in the selected list of toxins. Many of the most studied bacterial 
toxins have several domains, which individually may serve regulatory or enzymatic functions not related to the 
pathogenic or cytotoxic effects of the whole protein31. For example, the hemolysin, HlyA of Vibrio cholera consists 
of four distinct domains, which all play a role in pore formation (Fig. 5A). The Pro region (PF12563) is cleaved 
to activate the toxin32,33, while the beta trefoil (PF00652), the cytolysin (PF07968) and beta prism lectin jaca-
lin (PF16458) domains form a heptameric pore34. The homologous hemolysin toxin in Vibrio vulnificus (VVH) 
does not contain the beta prism lectin domain (PF16458) (Fig. 5B)35, while the chaperone-like Pro-domain is 
expressed as a separate gene product. The structural and sequence similarity between these toxins suggests that 
the VVH also forms a heptameric pore. Thus, even a high sequence similarity of a protein to the Pro or beta prism 
lectin region alone does not imply that the protein has a potential toxic effect, if the cytolysin and the beta trefoil 
lectins are absent. This example illustrates how a domain based approach can help in assessing functional simi-
larity of a protein to known toxins.

Figure 4. The toxin sequences grouped functionally to 381 PFAM domains. The number of sequences in each 
PFAM class varied widely (top). The most populated PFAM domains with the number of sequence entries are 
listed below.

http://S4
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Sequence signatures distinguish toxic from non-toxic proteins within a protein family. The 
diverse Kunitz-type protease inhibitor family includes (non-toxic) aprotinin or bovine pancreatic trypsin inhib-
itor (BPTI), domains of the Alzheimer’s amyloid precursor protein (APP) and tissue factor pathway inhibitor 
(TFPI). The same PFAM also contains toxic proteins from snake venoms36, including dendrotoxins from the 
venoms of mamba (Dendroaspis) snakes37. These dendrotoxins are highly homologous to BPTI, share the small 
(~6 kDa) prototype structure38–40 (Fig. 6), but function by blocking subtypes of voltage-dependent potassium 
channels of the Kv1 subfamily in neurons41. A BLAST sequence search in the NCBI sequence database with BPTI 
identified several dendrotoxins, with highly significant E-values of 10−10 to 10−12. However, dendrotoxins have 
little or no protease inhibitor activity and BPTI does not block potassium channels37. Therefore, E-values obtained 
from a BLAST search alone are not sufficient to distinguish toxic from non-toxic proteins in this family.

A functional motif analysis with PCPMer18 successfully distinguished the two protein groups. An alignment 
of experimentally verified potassium channel blocking dendrotoxins yielded 3 PCP- motifs (1: 25 KYCKLP 30, 
2: 41 PSFYYK 46, 3: 55 FDYSGCGGNANRF 67). The three motifs were then searched with PCPMer in eight 
trypsin inhibitor sequences, including that of BPTI. For motif 1, the average and standard deviations of the score 
values are 0.89 ± 0.3 for the toxic dendrotoxins versus 0.68 ± 0.8 for non-toxic members (P value 1.0*10−4), and 
for M2 0.87 ± 0.07 versus 0.56 ± 0.01 (P-value 3*10−7). The values for motif 3 are not significantly different (P 
value 0.03) (Table S5). Thus, motifs 1 and 2 are uniquely found in toxic members, whereas motif 3 is found in 
toxic and non-toxic members. As the mapping on the structure (Fig. 6) shows, motif 1 overlaps with the amino 
acid residues that have been shown by site-directed mutagenesis to be critical for inhibiting potassium channels41. 
Thus, the motif analysis coincides well with experimental results for areas responsible for the different activities.

Discussion
The objective of our research was to establish bioinformatics tools that can be used in the first tier of assessing 
the safety of proteins. The study, building on current industry practices to compare protein sequences to internal 
databases of known protein toxins, provides a validation of these approaches with quantitative data on the distri-
bution of toxins in the protein landscape. We show here that known toxins belong to a restricted number of func-
tional groups, as indicated by both a cluster analysis and specific annotation according to the PFAM classification. 
In addition, we demonstrate that motif recognition tools can distinguish the toxicity hazard of protein members 
within the same protein family. A detailed comparison will then allow the reviewer to determine the potential 
and possible mechanism for protein toxicity based on sequence or domain similarities with known toxic proteins. 
Such screening may eliminate unnecessary in vivo toxicity testing of a protein with valuable traits.

Our work demonstrates that the potential toxin sequences can be clustered into approximately 400 distinct 
groups, based on either sequence identity alone (Fig. 2a) or sequence features that link them to known functional 
protein families in PFAM (Fig. 4). As the list of potential toxins was independently established by four different 

Figure 5. Domain structures of the hemolysins from Vibrio cholera (a) and Vibrio vulnificus (b). The 
membrane-active form of both is a heptameric, pore-forming structure.

http://S5
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research groups with keyword searches and inclusion of specific known toxins, we believe that the selected list of 
toxins covers most currently identified toxins. Thus, our finding that the number of protein toxin domains repre-
sents only a small fraction of all those known for proteins opens an opportunity to focus the safety assessment on 
a well-defined list of protein domains and their related functional activities.

As we have shown, sequence identity and even structural similarity cannot be used as sole criteria for defin-
ing a protein as a toxin. Some toxins might require specific protein binding sites to guide the toxin to its target, 
e.g. an ion channel in the case of dendrotoxins. In other cases several proteins act together in a complex. In 
the anthrax toxin, the two enzymatic proteins, lethal factor (LF), a metalloprotease, and edema factor (EF), an 
adenylyl cyclase, require the pore forming protective antigen to enter cells and exert a toxic effect42–45. For those 
cases motif analysis tools can be helpful to identify the necessary catalytic activities and protein binding sites for 
toxicity.

Further computational analysis is required to establish a standardized database containing validated motifs 
of toxins, i.e. proteins that when administered to vertebrates have an adverse effect. One current bottleneck to 
assembling a database is the non-standard nomenclature used by biologists for proteins that are very similar to 
one another, as noted above for Shiga toxin 2 A/verocytotoxin. On the other hand, proteins with the same name 
and similar functions, such as hemolysins, can have quite different domain structures and/or sequences depend-
ing on the organism (Fig. 5). Although efforts are underway to standardize the nomenclature of toxins from 
specific organisms such as spiders6, scorpions46, centipedes47 and snakes48, a unifying standard nomenclature for 
all toxins reflecting their structural and functional similarities is currently not available. The sequence clustering 
we have achieved here will help to clarify such nomenclature issues by assigning most of the toxins to PFAM 
domains, and hierarchical clustering of the toxin sequences at the three identity levels of 95%, 65% and 35%.

The most highly studied toxins produced by bacteria, as Table S3 indicates, have many different pathogenic 
mechanisms/modes of action, including ribonucleases (YoeB), vacuolating cytotoxins, hemolysins, cytolysins49, 
proteases, phospholipases50, leukotrienes, neurotoxins or pore formation51,52. The snake venom toxins and the 
conotoxins also present many different activities that can inhibit the growth of plant, insect or mammalian cells 
or block neural cell receptors. Another example of intrinsic diversity within proteins with similar functions are 
the vacuolating cytotoxins of Helicobacter. These form at least 8 distinct clusters even at 35% identity, emphasiz-
ing that the annotated function covers several distinct families with similar annotations. This is also seen for the 
conotoxins, which despite their short sequences cluster into different functional families.

Our analysis is designed to be a first screening stage, on which to base more detailed computational and exper-
imental investigations. The final use for the protein depends on the risk versus benefits analysis and is outside the 
scope of this article. For example, even the most virulent proteins can have potentially valuable traits, depending 
on the administered dose and the route of exposure53. Ricin and Botulinum toxins are highly toxic at very low 
doses54, yet local injections of the later have proven useful for many therapeutic applications as well as the more 
widely publicized and profit-generating cosmetic ones. Ricin’s effects vary greatly depending on whether it is 
injected or consumed orally. Inactivated pertussis toxin is both a vaccine and a potential adjuvant55. Similarly, 

Figure 6. Dendrotoxin (a) and BPTI (b) group to the same Kunitz inhibitor PFAM domain and share the same 
3D fold. Sequence motifs were generated in an alignment of 10 dendrotoxins (motif 1 in red, 2 in cyan and 3 in 
green). Only motif 3 had a significant score in trypsin inhibitors.

http://S3


www.nature.com/scientificreports/

8SCientifiC REPORtS | 7: 13940  | DOI:10.1038/s41598-017-13957-1

anthrax toxins and derivatives may have use as antitumor agents56,57. Rendering a protein toxic may also require 
posttranslational processing58, specific cofactors for activity59, or contact with specific receptors on target cells60 
to exert pathogenic effects.

In conclusion, our current data suggest that there are only a few hundred sequentially and functionally dis-
tinct toxin clusters. This implies that most likely, the majority of proteins selected will not share those biochem-
ical functions and can be considered as safe. For those that do bear some similarity to known toxins, we have 
summarized the basic functions of the largest toxin clusters and present a complete list of all PFAM domains for 
those toxins. This, coupled with motif recognition tools, provide the first stages of a possible approach to address 
functional similarities for novel protein products.

Materials and Methods
Selection of toxins. The basis for our work is a collection of potentially toxic proteins that were assembled in 
internal databases of four biotechnology companies: DuPont Pioneer, Bayer Crop Science, Monsanto and BASF. 
The sequences were selected using keyword searches (e.g., ‘toxic’, ‘toxin’) in the GenBank database, and specific 
toxins as published in the toxin list 40 CFR 725.421 of the EPA or from the UniProt animal toxin database11 were 
added. As keyword searches are not highly specific, proteins from safe organisms, short sequences with 100% 
sequence identity to longer entries, and those known to be non-toxic were removed (Fig. 1). The specific lists of 
keyword searches and the filtering processes were done independently by the research teams in the four compa-
nies. Finally, the combined database contained 10,389 sequences whose gi entries occurred in at least two of the 
databases. This selection criterion minimized the number of non-toxic entries in the database and at the same 
time gave comprehensive coverage of sequences with toxin annotations.

Cluster analysis and functional classification. Cluster analysis of the toxin sequences was done with 
BLASTCLUST, a standalone software package distributed from NCBI. BLASTCLUST automatically clusters pro-
tein sequences based on pairwise alignments generated by the BLAST algorithm using the sequence identity and 
coverage of the alignment as a criterion to determine if the two sequences are neighbors. Clusters are generated 
by the single-linkage method, which includes a sequence in a cluster if the sequence is a neighbor to at least 
one sequence in the cluster. Classification of protein domains occurring in the toxins was based on the PFAM 
classification (version 29.0, Dec 2015 release). PFAM17 is a manually curated database of protein domains that 
contained 16295 entries. The identification of a domain for all toxin sequences in the database was determined 
by the HMMER30 software.

Network analysis. Each sequence entry in the database received a unique identifier (cluster ID) for the 
membership in a cluster of a certain sequence identity level. For example, we denoted the clusters at the 95% 
level as Axxxx, where xxxx is the rank of the cluster among the 95% level clusters sorted according to the number 
of members. Thus A5 is the fifth largest cluster among the 95% level clusters. The IDs for the 65% and 35% level 
clusters were Dxxxx and Gxxxx respectively. A computer program in Perl was written to collect for each member 
in a cluster of the 35% level the memberships in the 65% and 95% clusters. The result was then represented and 
analyzed using Cytoscape26.

Motif analysis. Homologous proteins with similar function usually share similar sequence regions, 
although the overall sequence identity can be as low as 20–30%. These critical regions, also known as motifs, 
important for the biological function and similar fold, are in most cases highly conserved61–64. In this study, 
we used PCPMer18,20,65 to generate motifs of a toxin family and then used these motifs to search for similar 
sequence regions  in other proteins. PCPMer identifies functionally important areas  based on conservation of 
physical-chemical properties (PCPs) of amino acids in a multiple sequence alignment of proteins. The criteria 
for conservation are derived from the distributions of the PCP descriptors in each column of the alignment as 
compared to a background distributions, derived from a statistical study of non-redundant proteins from the 
Swiss-Prot database66 as a random sample. If the distributions of the five PCP descriptors are significantly differ-
ent from the background distribution as measured by the relative entropy (or Kullback-Leibler divergence)67 for 
any of the five descriptors E1 to E5, that position is considered as conserved. The functional motifs are defined as 
continuous stretches of conserved residues with relative entropy values higher than an empirical or user specified 
threshold. The motifs are typically 5–15 amino acids in length, where the minimum length and inclusion of gaps 
can be specified by the user. The PCPMer approach has been successfully used to characterize functionally impor-
tant sites in endonucleases, the cytochrome P450 protein, metal-binding proteins, the Ig domains of the muscle 
protein titin and several allergenic proteins18,42,68–72.

Data Availability. The complete list of PFAM domains containing toxic proteins (Table S4) can be down-
loaded from our website http://curie.utmb.edu/SciRep/Negi_et_Table_S4.xlsx. All other data generated or ana-
lyzed during this study are included in this published article and its Supplementary Information files.
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