681 research outputs found

    Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at s \sqrt{s} , sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT_{T}) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT_{T} algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT_{T} values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT_{T} distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT_{T} region, while they underestimate the lower jT_{T} region. The jT_{T} distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT_{T} values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT_{T} values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Inclusive quarkonium production in pp collisions at s=5.02\sqrt{s} = 5.02 TeV

    No full text
    This article reports on the inclusive production cross section of several quarkonium states, J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, Υ(1S)\Upsilon\rm(1S), Υ(2S)\Upsilon\rm(2S), and Υ(3S)\Upsilon\rm(3S), measured with the ALICE detector at the LHC, in \pp collisions at s=5.02\sqrt{s} = 5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<42.5 < y < 4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 μ\sigma_{\mathrm{J}/\psi} = 5.88 \pm 0.03 \pm 0.34\ \mub, σψ(2S)=0.87±0.06±0.10 μ\sigma_{\psi {\rm (2S)}} = 0.87 \pm 0.06 \pm 0.10\ \mub, σΥ(1S)=45.5±3.9±3.5\sigma_{\Upsilon\rm(1S)} = 45.5 \pm 3.9 \pm 3.5 nb, σΥ(2S)=22.4±3.2±2.7\sigma_{\Upsilon\rm(2S)} = 22.4 \pm 3.2 \pm 2.7 nb, and σΥ(3S)=4.9±2.2±1.0\sigma_{\Upsilon\rm(3S)} = 4.9 \pm 2.2 \pm 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. The transverse-momentum (pTp_{\rm T}) and rapidity (yy) differential cross sections for J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, Υ(1S)\Upsilon\rm(1S), and the ψ(2S)\psi {\rm (2S)}-to-J/ψ\mathrm{J}/\psi cross section ratios are presented. For the first time, the cross sections of the three Υ\Upsilon states, as well as the ψ(2S)\psi {\rm (2S)} one as a function of pTp_{\rm T} and yy, are measured at s=5.02\sqrt{s} = 5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ\mathrm{J}/\psipTp_{\rm T} reach with respect to previously published results. A comparison with ALICE measurements in pp collisions at s=2.76\sqrt{s} = 2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models

    Measurement of the Cross Sections of Ξc0\Xi^0_{c} and Ξc+\Xi^+_{c} Baryons and of the Branching-Fraction Ratio BR(Ξc0Ξe+νe\Xi^0_{c} \rightarrow \Xi^-{e}^+\nu_{ e})/BR(Ξc0Ξπ+\Xi^0_{c} \rightarrow \Xi^-\pi^+) in pp collisions at 13 TeV

    No full text
    The pTp_T-differential cross sections of prompt charm-strange baryons Ξc0_c^0 and Ξc+_c^+ were measured at midrapidity (|y|<0.5) in proton-proton (pp) collisions at a center-of-mass energy s\sqrt{s} = 13 TeV with the ALICE detector at the LHC. The Ξc0_c^0 baryon was reconstructed via both the semileptonic decay (Ξ^-e+^+νe_e) and the hadronic decay (Ξ^-π+^+) channels. The Ξc+_c^+ baryon was reconstructed via the hadronic decay (Ξ^-π+^+π+^+) channel. The branching-fraction ratio BR(Ξc0_c^0→Ξ^-e+^+νe_e)/BR(Ξc0_c^0→Ξ^-π+^+) = 1.38±0.14(stat)±0.22(syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pTp_T) dependence of the Ξc0_c^0- and Ξc+_c^+-baryon production relative to the D0^0 meson and to the Σc0,+,++_c^{0,+,++}- and Λc+_c^+-baryon production are reported. The baryon-to-meson ratio increases toward low pTp_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e+^+e^-) and hadronic collisions

    Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at sNN=2.76\sqrt{s_{_{NN}}}=2.76 TeV

    No full text
    The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions

    Inclusive heavy-flavour production at central and forward rapidity in Xe–Xe collisions at sNN\sqrt{s_{\rm NN}} = 5.44 TeV

    No full text
    The first measurements of the production of muons and electrons from heavy-flavour hadron decays in Xe–Xe collisions at sNN\sqrt{s_{\rm NN}} = 5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement of the nuclear modification factor RAAR_{AA} is performed as a function of transverse momentum pTp_T in several centrality classes at forward rapidity (2.5 < y < 4) and midrapidity (|y| < 0.8) for muons and electrons from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. The RAAR_{AA} of muons from heavy-flavour hadron decays is compared to previous measurements in Pb–Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV. When the nuclear modification factors are compared in the centrality classes 0–10% for Xe–Xe collisions and 10–20% for Pb–Pb collisions, which have similar charged-particle multiplicity density, a similar suppression, with RAAR_{AA} ∼ 0.4 in the pTp_T interval 4 < pTp_T < 8 GeV/c, is observed. The comparison of the measured RAAR_{AA} values in the two collision systems brings new insights on the properties of the quark-gluon plasma by investigating the system-size and geometry dependence of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron decays provide new constraints to model calculations

    Inclusive heavy-flavour production at central and forward rapidity in Xe-Xe collisions at , root sNN=5.44 TeV

    Get PDF
    The first measurements of the production of muons and electrons from heavy-flavour hadron decays in Xe–Xe collisions at sNN=5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement of the nuclear modification factor RAA is performed as a function of transverse momentum pT in several centrality classes at forward rapidity (2.5<y<4) and midrapidity (|y|<0.8) for muons and electrons from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. The RAA of muons from heavy-flavour hadron decays is compared to previous measurements in Pb–Pb collisions at sNN=5.02 TeV. When the nuclear modification factors are compared in the centrality classes 0–10% for Xe–Xe collisions and 10–20% for Pb–Pb collisions, which have similar charged-particle multiplicity density, a similar suppression, with RAA∼0.4 in the pT interval 4<pT<8 GeV/c, is observed. The comparison of the measured RAA values in the two collision systems brings new insights on the properties of the quark-gluon plasma by investigating the system-size and geometry dependence of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron decays provide new constraints to model calculations

    Inclusive quarkonium production in pp collisions at s=5.02\sqrt{s} = 5.02 TeV

    No full text
    This article reports on the inclusive production cross section of several quarkonium states, J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, Υ(1S)\Upsilon\rm(1S), Υ(2S)\Upsilon\rm(2S), and Υ(3S)\Upsilon\rm(3S), measured with the ALICE detector at the LHC, in \pp collisions at s=5.02\sqrt{s} = 5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<42.5 < y < 4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 μ\sigma_{\mathrm{J}/\psi} = 5.88 \pm 0.03 \pm 0.34\ \mub, σψ(2S)=0.87±0.06±0.10 μ\sigma_{\psi {\rm (2S)}} = 0.87 \pm 0.06 \pm 0.10\ \mub, σΥ(1S)=45.5±3.9±3.5\sigma_{\Upsilon\rm(1S)} = 45.5 \pm 3.9 \pm 3.5 nb, σΥ(2S)=22.4±3.2±2.7\sigma_{\Upsilon\rm(2S)} = 22.4 \pm 3.2 \pm 2.7 nb, and σΥ(3S)=4.9±2.2±1.0\sigma_{\Upsilon\rm(3S)} = 4.9 \pm 2.2 \pm 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. The transverse-momentum (pTp_{\rm T}) and rapidity (yy) differential cross sections for J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, Υ(1S)\Upsilon\rm(1S), and the ψ(2S)\psi {\rm (2S)}-to-J/ψ\mathrm{J}/\psi cross section ratios are presented. For the first time, the cross sections of the three Υ\Upsilon states, as well as the ψ(2S)\psi {\rm (2S)} one as a function of pTp_{\rm T} and yy, are measured at s=5.02\sqrt{s} = 5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ\mathrm{J}/\psipTp_{\rm T} reach with respect to previously published results. A comparison with ALICE measurements in pp collisions at s=2.76\sqrt{s} = 2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models

    K*(892)0 and ϕ(1020) production in p-Pb collisions at sNN\sqrt{s_{NN}} = 8.16 TeV

    No full text
    The production of K∗(892)0 and ϕ(1020) resonances has been measured in p-Pb collisions at sNN−−−√ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval −0.5 8 GeV/c), the RpPb values of all hadrons are consistent with unity within uncertainties. The RpPb of K∗(892)0 and ϕ(1020) at sNN−−−√ = 8.16 and 5.02 TeV show no significant energy dependence

    Measurement of prompt D0, Λ+c, and Σ0,++c (2455) production in proton–proton collisions at √s = 13 TeV

    No full text
    The pT-differential production cross sections of prompt D0, Λ+c, and Σ0,++c(2455) charmed hadrons are measured at midrapidity (|y|<0.5) in pp collisions at s√=13 TeV. This is the first measurement of Σ0,++c production in hadronic collisions. Assuming the same production yield for the three Σ0,+,++c isospin states, the baryon-to-meson cross section ratios Σ0,+,++c/D0 and Λ+c/D0 are calculated in the transverse momentum (pT) intervals 2<pT<12 GeV/c and 1<pT<24 GeV/c. Values significantly larger than in e+e− collisions are observed, indicating for the first time that baryon enhancement in hadronic collisions also extends to the Σc. The feed-down contribution to Λ+c production from Σ0,+,++c is also reported and is found to be larger than in e+e− collisions. The data are compared with predictions from event generators and other phenomenological models, providing a sensitive test of the different charm-hadronisation mechanisms implemented in the models
    corecore