3,058 research outputs found

    Engineering Study of the SIS100 Radiation Resistant Quadrupole Magnet Environment

    Get PDF

    Investigation of optimization of attitude control systems, volume ii

    Get PDF
    Attitude control system optimization - computer programs, listings and subroutine

    Investigation of optimization of attitude control systems, volume i

    Get PDF
    Optimization of attitude control systems by development of mathematical model and computer program for space vehicle simulatio

    Pharmacological profile of novel psychoactive benzofurans

    Get PDF
    Benzofurans are newly used psychoactive substances, but their pharmacology is unknown. The aim of the present study was to pharmacologically characterize benzofurans in vitro.; We assessed the effects of the benzofurans 5-APB, 5-APDB, 6-APB, 6-APDB, 4-APB, 7-APB, 5-EAPB and 5-MAPDB and benzodifuran 2C-B-FLY on the human noradrenaline (NA), dopamine and 5-HT uptake transporters using HEK 293 cells that express the respective transporters. We also investigated the release of NA, dopamine and 5-HT from monoamine-preloaded cells, monoamine receptor-binding affinity and 5-HT2A and 5-HT2B receptor activation.; All of the benzofurans inhibited NA and 5-HT uptake more than dopamine uptake, similar to methylenedioxymethamphetamine (MDMA) and unlike methamphetamine. All of the benzofurans also released monoamines and interacted with trace amine-associated receptor 1 (TA1 receptor), similar to classic amphetamines. Most benzofurans were partial 5-HT2A receptor agonists similar to MDMA, but also 5-HT2B receptor agonists, unlike MDMA and methamphetamine. The benzodifuran 2C-B-FLY very potently interacted with 5-HT2 receptors and also bound to TA1 receptors.; Despite very similar structures, differences were found in the pharmacological profiles of different benzofurans and compared with their amphetamine analogues. Benzofurans acted as indirect monoamine agonists that interact with transporters similarly to MDMA. The benzofurans also interacted with 5-HT receptors. This pharmacological profile probably results in MDMA-like entactogenic psychoactive properties. However, benzofurans induce 5-HT2B receptor activation associated with heart valve fibrosis. The pharmacology of 2C-B-FLY indicates predominant hallucinogenic properties and a risk for vasoconstriction

    Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory

    Analysis and Optimization of Nonlinear Diode Grids for Shielding of Enclosures With Apertures

    Get PDF
    Lumped-element grids provide an attractive option for wave propagation control in electromagnetic compatibility (EMC) engineering. This article investigates the peak shielding effectiveness (SE) of a diode grid used for protection of enclosures with apertures against high-intensity radiation fields (HIRFs). The nonlinearly loaded aperture is investigated with an efficient hybrid field-circuit simulation approach. Numerical experiments show that design aspects, e.g., aperture and enclosure size, grid density, impedance characteristic of lumped loads, play an important role in the field transmission through a diode grid which is nonlinear and time-variant. With a physics-based analysis of the interaction between the grid and the enclosure-backed aperture, nonlinear shielding techniques are identified that allow a control of the peak SE between 0 and 26 dB in novel ways. For the first time, the peak SE curve of a diode grid is demonstrated with four different field intensity dependencies, i.e., intensity low-pass, intensity high-pass, intensity bandpass, and intensity band-stop selectivities from tens V/m to hundreds of V/m. By considering design aspects into a two-step optimization procedure, practical guidelines are provided for the nonlinear shielding implementation

    The Influence of Cortisol, Flow, and Anxiety on Performance in E-Sports: A Field Study

    Get PDF
    Background and Objectives. Most performance theories were tested under controlled laboratory settings and offer therefore only limited transferability to real-life situations. E-sport competitions offer a relatively controllable while at the same time competitive setting, and our aim was to examine different influencing factors on competitive performance. Design and Methods. Salivary cortisol was measured immediately before, after, and 30 minutes after a game of 23 computer players during e-sport tournaments. The players answered the Flow Short Scale, which consists of the two subdimensions “flow experience” and “anxiety” subsequent to their game. The performance was assessed by the result of each player’s game (win or loss). Results. Mean cortisol levels increased significantly during the game but response patterns were inconsistent. Winners and losers differed significantly in anxiety with winners showing higher anxiety levels. After dividing the sample into three groups of different cortisol response patterns, significant differences in performance and anxiety were found, with low to moderate levels of cortisol being associated with the highest performance and anxiety. Conclusions. A low to moderate physiological arousal and a simultaneously high level of anxiety represent a favorable state for achieving optimal performance during e-sports. Anxiety seems to exert a stronger influence on performance than physiological arousal

    PCA detection and denoising of Zeeman signatures in stellar polarised spectra

    Full text link
    Our main objective is to develop a denoising strategy to increase the signal to noise ratio of individual spectral lines of stellar spectropolarimetric observations. We use a multivariate statistics technique called Principal Component Analysis. The cross-product matrix of the observations is diagonalized to obtain the eigenvectors in which the original observations can be developed. This basis is such that the first eigenvectors contain the greatest variance. Assuming that the noise is uncorrelated a denoising is possible by reconstructing the data with a truncated basis. We propose a method to identify the number of eigenvectors for an efficient noise filtering. Numerical simulations are used to demonstrate that an important increase of the signal to noise ratio per spectral line is possible using PCA denoising techniques. It can be also applied for detection of magnetic fields in stellar atmospheres. We analyze the relation between PCA and commonly used well-known techniques like line addition and least-squares deconvolution. Moreover, PCA is very robust and easy to compute.Comment: accepted to be published in A&

    Fluctuations in viscous fingering

    Full text link
    Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels reveal finger width fluctuations that were not observed in previous experiments, which had lower aspect ratios and higher capillary numbers Ca. These fluctuations intermittently narrow the finger from its expected width. The magnitude of these fluctuations is described by a power law, Ca^{-0.64}, which holds for all aspect ratios studied up to the onset of tip instabilities. Further, for large aspect ratios, the mean finger width exhibits a maximum as Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a few additional minor results. (Figures unchanged.) 4 pages, 3 figures. Submitted to PRE Rapi
    • …
    corecore