84 research outputs found

    River water quality assessment using environmentric techniques : case study of Jakara River Basin.

    Get PDF
    akara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p = 0.930, p = 0.001) and BOD5 and COD (r p = 0.839, p = 0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin

    Hepatic safety of antibiotics used in primary care

    Get PDF
    Antibiotics used by general practitioners frequently appear in adverse-event reports of drug-induced hepatotoxicity. Most cases are idiosyncratic (the adverse reaction cannot be predicted from the drug's pharmacological profile or from pre-clinical toxicology tests) and occur via an immunological reaction or in response to the presence of hepatotoxic metabolites. With the exception of trovafloxacin and telithromycin (now severely restricted), hepatotoxicity crude incidence remains globally low but variable. Thus, amoxicillin/clavulanate and co-trimoxazole, as well as flucloxacillin, cause hepatotoxic reactions at rates that make them visible in general practice (cases are often isolated, may have a delayed onset, sometimes appear only after cessation of therapy and can produce an array of hepatic lesions that mirror hepatobiliary disease, making causality often difficult to establish). Conversely, hepatotoxic reactions related to macrolides, tetracyclines and fluoroquinolones (in that order, from high to low) are much rarer, and are identifiable only through large-scale studies or worldwide pharmacovigilance reporting. For antibiotics specifically used for tuberculosis, adverse effects range from asymptomatic increases in liver enzymes to acute hepatitis and fulminant hepatic failure. Yet, it is difficult to single out individual drugs, as treatment always entails associations. Patients at risk are mainly those with previous experience of hepatotoxic reaction to antibiotics, the aged or those with impaired hepatic function in the absence of close monitoring, making it important to carefully balance potential risks with expected benefits in primary care. Pharmacogenetic testing using the new genome-wide association studies approach holds promise for better understanding the mechanism(s) underlying hepatotoxicity

    Surface water quality contamination source apportionment and physicochemical characterization at the upper section of the Jakara Basin, Nigeria.

    Get PDF
    The present study investigates the surface water quality of three important tributaries of Jakara Basin, northwestern Nigeria to provide an overview of the relationship and sources of physicochemical and biological parameters. A total of 405 water samples were collected from 27 sampling points and analyzed for 13 parameters: dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), pH, ammonia-nitrogen (NH3NL), dissolved solids (DS), total solids (TS), nitrates (NO3), chloride (Cl), phosphates (PO4), Escherichia coli (E. coli) and fecal coliform bacteria (FCB). Pearson’s product–moment correlation matrix and principal component analysis (PCA) were used to distinguish the main pollution sources in the basin. Four varimax components were extracted from PCA, which explained 84.86, 83.60, and 78.69 % of the variation in the surface water quality for Jakara, Tsakama, and Gama-Kwari Rivers, respectively. Strong positive loading included BOD5, COD, NH3NL, E. coli, and FCB with negative loading on DO attribute to a domestic waste water pollution source. One-way ANOVA revealed that there was no significant difference in the mean of the three water bodies (p > 0.05). It is therefore recommended that the government should be more effective in controlling the point source of pollution in the area

    Comparison of Sweeping Jet Actuators with Different Flow-Control Techniques for Flow-Separation Control

    No full text
    corecore