8 research outputs found

    Nel Noddings ja välittämisen etiikan merkitys lasten kasvatuksessa

    Get PDF
    Tiivistelmä. Tutkimukseni tarkoituksena on avata Nel Noddingsin välittämisen etiikan teorian keskeisimpiä käsitteitä ja pohtia niiden merkitystä lasten kasvatuksessa. Olen rajannut tarkastelun koskemaan kouluissa tapahtuvaa kasvatusta. Tutkimuskysymyksiksi muotoutui: mitä Nel Noddings tarkoittaa luonnollisella ja eettisellä välittämisellä? Miten luonnollinen ja eettinen välittäminen toteutuvat käytännössä? Miksi olisi tärkeää huomioida eettinen välittäminen kouluissa tapahtuvassa kasvatuksessa? Vastauksia etsiessäni haluan samalla pohtia yleisellä tasolla, mitä annettavaa Noddingsin teorialla eettisestä välittämisestä voisi olla suomalaisille kouluille, jotka näyttävät tänä päivänä kärsivän erilaisista sosiaalisista ongelmista. Nel Noddingsin filosofinen ja kasvatuksellinen pohdinta välittämisen etiikasta (ethics of care) pohjautuu feminiiniseen näkökulmaan (feminine approach) tarkastella moraalisia kysymyksiä ja arvottamista. Keskeisimpiä käsitteitä hänen teoriassaan ovat luonnollinen välittäminen, eettinen välittäminen ja relationaalinen välittäminen, jotka ovat kasvatuksen peruskivijalka. Ihmissuhteet ja vuorovaikutus on se alue, jossa lasten kasvatus eettisesti välittäviksi toimijoiksi ottaa paikkansa. Vuorovaikutuksen laatuun vaikuttaa opettajan kyky välittää luonnollisesti ja eettisesti sekä kyky ja halu todella kohdata oppilaansa. Oppilaan vastaanottavuus tarjotulle välittämiselle viimeistelee ja mahdollistaa eettisen välittämisen todellisen toteutumisen. Eettisen välittämisen opettamisen tavoitteena on kasvattaa itsenäisiä ja omasta hyvinvoinnistaan välittäviä ihmisiä, jotka kykenevät välittämään myös toisista ihmisistä sekä lähiyhteisöstään ja ympäristöstään. Tutkimuksessani tulokset tukevat ajatusta eettisen välittämisen tärkeydestä kouluissa tapahtuvassa kasvatuksessa. Eettisen välittämisen tuominen osaksi koulujen arkisia käytänteitä ja tavoitteita, voisi tukea henkilöstön sekä oppilaiden kokonaisvaltaista hyvinvointia. Kun oppilas tunteen, että hänestä välitetään, hän oppii välittämään itsestään ja asiat saavat silloin merkityksellisyyden. Työskentely eettisesti välittävällä työotteella edellyttäisi kuitenkin rohkeutta ja uudenlaista kasvatuksen organisoimista. Erityisesti traditionaalisia asenteita ja käytänteitä tulisi tarkastella uudessa valossa ja antaa tilaa välittämisen etiikalle kasvatustyössä

    Profiles of glucose metabolism in different prediabetes phenotypes, classified by fasting glycemia, 2-hour OGTT, glycated hemoglobin, and 1-hour OGTT:An IMI DIRECT study

    Get PDF
    Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). β-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P &lt; 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P &lt; 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio &gt;2, P &lt; 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.</p

    Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study

    Get PDF
    Background The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. Methods Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. Results We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. Conclusions Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.Peer reviewe

    Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

    Get PDF
    We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue

    Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

    Get PDF
    We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue

    Predicting glycated hemoglobin levels in the non-diabetic general population:Development and validation of the DIRECT-DETECT prediction model - a DIRECT study

    Get PDF
    AIMS/HYPOTHESIS: To develop a prediction model that can predict HbA1c levels after six years in the non-diabetic general population, including previously used readily available predictors. METHODS: Data from 5,762 initially non-diabetic subjects from three population-based cohorts (Hoorn Study, Inter99, KORA S4/F4) were combined to predict HbA1c levels at six year follow-up. Using backward selection, age, BMI, waist circumference, use of anti-hypertensive medication, current smoking and parental history of diabetes remained in sex-specific linear regression models. To minimize overfitting of coefficients, we performed internal validation using bootstrapping techniques. Explained variance, discrimination and calibration were assessed using R2, classification tables (comparing highest/lowest 50% HbA1c levels) and calibration graphs. The model was externally validated in 2,765 non-diabetic subjects of the population-based cohort METSIM. RESULTS: At baseline, mean HbA1c level was 5.6% (38 mmol/mol). After a mean follow-up of six years, mean HbA1c level was 5.7% (39 mmol/mol). Calibration graphs showed that predicted HbA1c levels were somewhat underestimated in the Inter99 cohort and overestimated in the Hoorn and KORA cohorts, indicating that the model's intercept should be adjusted for each cohort to improve predictions. Sensitivity and specificity (95% CI) were 55.7% (53.9, 57.5) and 56.9% (55.1, 58.7) respectively, for women, and 54.6% (52.7, 56.5) and 54.3% (52.4, 56.2) for men. External validation showed similar performance in the METSIM cohort. CONCLUSIONS/INTERPRETATION: In the non-diabetic population, our DIRECT-DETECT prediction model, including readily available predictors, has a relatively low explained variance and moderate discriminative performance, but can help to distinguish between future highest and lowest HbA1c levels. Absolute HbA1c values are cohort-dependent

    Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study

    No full text
    Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining causal pathways underlying this relationship may help optimize the prevention and treatment of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways linking dysglycemia and fatty liver, using a combination of causal inference methods.Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication purposes. Bayesian networks were employed to infer causal pathways, with causal validation using two-sample Mendelian randomization.Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate (BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of fatty liver (&gt;5%) increased significantly when conditioning on high levels of BasalISR and VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable results. MR confirmed most causal pathways predicted by the Bayesian networks.Here, BasalISR had the highest causal effect on fatty liver predisposition, providing mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR may represent a pragmatic biomarker for NAFLD prediction in clinical practice.Competing Interest StatementHR is an employee and shareholder of Sanofi. MIM: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. MIM has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MIM is an employee of Genentech, and a holder of Roche stock. AM is a consultant for Lilly and has received research grants from several diabetes drug companies. PWF has received research grants from numerous diabetes drug companies and fess as consultant from Novo Nordisk, Lilly, and Zoe Global Ltd. He is currently the Scientific Director in Patient Care at the Novo Nordisk Foundation. Other authors declare non competing interests.Funding StatementThe work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement 115317 (DIRECT) resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. NAP is supported in part by Henning och Johan Throne-Holsts Foundation, Hans Werthen Foundation, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. HPM is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AGJ is supported by an NIHR Clinician Scientist award (17/0005624). RK is funded by the Novo Nordisk Foundation (NNF18OC0031650) as part of a postdoctoral fellowship, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AK, PM, HF, JF and GNG are supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. TJM is funded by an NIHR clinical senior lecturer fellowship. S.Bru acknowledges support from the Novo Nordisk Foundation (grants NNF17OC0027594 and NNF14CC0001). ATH is a Wellcome Trust Senior Investigator and is also supported by the NIHR Exeter Clinical Research Facility. JMS acknowledges support from Science for Life Laboratory (Plasma Profiling Facility), Knut and Alice Wallenberg Foundation (Human Protein Atlas) and Erling-Persson Foundation (KTH Centre for Precision Medicine). MIM is supported by the following grants; Wellcome (090532, 098381, 106130, 203141, 212259); NIH (U01-DK105535). PWF is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Approval for the study protocol was obtained from each of the regional research ethics review boards separately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands: NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132), and all participants provided written informed consent at enrolment. The research conformed to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAuthors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable reques

    Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits

    Get PDF
    Abstract We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue
    corecore