643 research outputs found

    Slow dynamics and stress relaxation in a liquid as an elastic medium

    Full text link
    We propose a new framework to discuss the transition from exponential relaxation in a liquid to the regime of slow dynamics. For the purposes of stress relaxation, we show that a liquid can be treated as an elastic medium. We discuss that, on lowering the temperature, the feed-forward interaction mechanism between local relaxation events becomes operative, and results in slow relaxation.Comment: changed conten

    Time dependence of the survival probability of an opinion in a closed community

    Full text link
    The time dependence of the survival probability of an opinion in a closed community has been investigated in accordance with social temperature by using the Kawasaki-exchange dynamics based on previous study in Ref. [1]. It is shown that the survival probability of opinion decays with stretched exponential law consistent with previous static model. However, the crossover regime in the decay of the survival probability has been observed in this dynamic model unlike previous model. The decay characteristics of both two regimes obey to stretched exponential.Comment: Revised version of the paper (9 page, 5 Figures). Submitted to Int. J. Mod. Phys.

    Non-exponential relaxation for anomalous diffusion

    Full text link
    We study the relaxation process in normal and anomalous diffusion regimes for systems described by a generalized Langevin equation (GLE). We demonstrate the existence of a very general correlation function which describes the relaxation phenomena. Such function is even; therefore, it cannot be an exponential or a stretched exponential. However, for a proper choice of the parameters, those functions can be reproduced within certain intervals with good precision. We also show the passage from the non-Markovian to the Markovian behaviour in the normal diffusion regime. For times longer than the relaxation time, the correlation function for anomalous diffusion becomes a power law for broad-band noise.Comment: 6 pages, 2 figure

    Electron Glass Dynamics

    Full text link
    Examples of glasses are abundant, yet it remains one of the phases of matter whose understanding is very elusive. In recent years, remarkable experiments have been performed on the dynamical aspects of glasses. Electron glasses offer a particularly good example of the 'trademarks' of glassy behavior, such as aging and slow relaxations. In this work we review the experimental literature on electron glasses, as well as the local mean-field theoretical framework put forward in recent years to understand some of these results. We also present novel theoretical results explaining the periodic aging experiment.Comment: Invited review to appear in Annual Review of Condensed Matter Physic

    Rotational Brownian motion on the sphere surface and rotational relaxation

    Full text link
    The spatial components of the autocorrelation function of noninteracting dipoles are analytically obtained in terms of rotational Brownian motion on the surface of a unit sphere using multi-level jumping formalism based on Debye's rotational relaxation model, and the rotational relaxation functions are evaluated.Comment: RevTex, 4 pages, submitted to Chin. Phys. Let

    Characterization of the Dynamics of Glass-forming Liquids from the Properties of the Potential Energy Landscape

    Get PDF
    We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.Comment: 13 pages, 6 figure

    Experimental compaction of anisotropic granular media

    Full text link
    We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic and weakly confined granular material, using high-resolution γ\gamma-ray adsorption. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical solicitations evolve to a dense state. We find that the packing fraction evolution is slowed by the grain anisotropy but, as for spherically shaped grains, can be well fitted by a stretched exponential. For a given type of grains, the characteristic times of relaxation and of convection are found to be of the same order of magnitude. On the contrary compaction mechanisms in the media strongly depend on the grain anisotropy.Comment: to appear in the european physical journal E (EPJE

    Twist glass transition in regioregulated poly(3-alkylthiophenes)s

    Full text link
    The molecular structure and dynamics of regioregulated poly(3-butylthiophene) (P3BT), poly(3-hexylthiophene)(P3HT), and poly(3-dodecylthiophene) (P3DDT) were investigated using Fourier transform infrared absorption (FTIR), solid state 13^{13}C nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC) measurements. In the DSC measurements, the endothermic peak was obtained around 340 K in P3BT, and assigned to enthalpy relaxation that originated from the glass transition of the thiophene ring twist in crystalline phase from results of FTIR, 13^{13}C cross-polarization and magic-angle spinning (CPMAS) NMR, 13^{13}C spin-lattice relaxation time measurements, and centerband-only detection of exchange (CODEX) measurements. We defined this transition as {\it twist-glass transition}, which is analogous to the plastic crystal - glassy crystal transition.Comment: 9 pages, 10 figures, 2 tables. Phys.Rev.B, in pres

    Anomalous Rotational Relaxation: A Fractional Fokker-Planck Equation Approach

    Full text link
    In this study we obtained analytically relaxation function in terms of rotational correlation functions based on Brownian motion for complex disordered systems in a stochastic framework. We found out that rotational relaxation function has a fractional form for complex disordered systems, which indicates relaxation has non-exponential character obeys to Kohlrausch-William-Watts law, following the Mittag-Leffler decay.Comment: Revtex4, 9 pages. Paper was revised. References adde

    A Hybrid model for the origin of photoluminescence from Ge nanocrystals in SiO2_2 matrix

    Full text link
    In spite of several articles, the origin of visible luminescence from germanium nanocrystals in SiO2_2 matrix is controversial even today. Some authors attribute the luminescence to quantum confinement of charge carriers in these nanocrystals. On the other hand, surface or defect states formed during the growth process, have also been proposed as the source of luminescence in this system. We have addressed this long standing query by simultaneous photoluminescence and Raman measurements on germanium nanocrystals embedded in SiO2_2 matrix, grown by two different techniques: (i) low energy ion-implantation and (ii) atom beam sputtering. Along with our own experimental observations, we have summarized relevant information available in the literature and proposed a \emph{Hybrid Model} to explain the visible photoluminescence from nanocrystalline germanium in SiO2_2 matrix.Comment: 23 pages, 8 figure
    corecore