
ar
X

iv
:1

10
8.

15
80

v1
  [

co
nd

-m
at

.d
is

-n
n]

  7
 A

ug
 2

01
1

Characterization of the Dynamics of Glass-forming Liquids from the Properties of the

Potential Energy Landscape

Sumilan Banerjee, Chandan Dasgupta
Department of Physics, Indian Institute of Science, Bangalore

We develop a framework for understanding the difference between strong and fragile behavior
in the dynamics of glass-forming liquids from the properties of the potential energy landscape.
Our approach is based on a master equation description of the activated jump dynamics among
the local minima of the potential energy (the so-called inherent structures) that characterize the
potential energy landscape of the system. We study the dynamics of a small atomic cluster using
this description as well as molecular dynamics simulations and demonstrate the usefulness of our
approach for this system. Many of the remarkable features of the complex dynamics of glassy systems
emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The
dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the
system is allowed to explore the full configuration space. This behavior arises because the dynamics
is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers
between these minima. When the system is constrained to explore only a limited region of the
potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the
dynamics is found to exhibit the characteristics of a fragile liquid.

I. INTRODUCTION

In the supercooled state, glass-forming liquids exhibit
many fascinating features [1–3] in its dynamic behavior,
such as multistage, non-exponential decay of fluctuations
and a rapid growth of relaxation times with decreasing
temperature. In these aspects, glassy systems challenge
us with many interesting issues and questions which are
not well resolved theoretically.

A popular phenomenological characterization of the
dynamics of glassy systems, proposed by Angell, [1–4]
is the classification of the dynamics as strong or frag-

ile. It classifies different glass formers on the basis of
the temperature dependence of their viscosity η or their
structural relaxation time τ . Quite generally, the rapid
growth of τ with temperature T can be represented by
a generalized Arrhenius form, τ(T ) ∼ exp (Eb(T )/kBT )
with an effective temperature dependent activation en-
ergy Eb(T ). For strong systems, this activation energy is
essentially independent of temperature while fragile sys-
tems exhibit a strong temperature dependence of this
quantity: it increases as T is decreased. This implies
that the relaxation mechanism is independent of temper-
ature for the first type of systems, whereas for the other
type, it depends on T . Although various measures of the
extent of fragility exist in literature [5] in terms of the
slope of the ln(τ) vs. 1/T plot, the quantitative distinc-
tion between strong and fragile liquids at a microscopic
level is not fully understood yet.

Following Goldstein [6], a widely accepted way of look-
ing at glassy dynamics is to view the dynamical evolution
of the system in terms of the motion of a state point in
configuration space, specified by 3N coordinates for anN
particles system, over its potential energy surface, often
referred to as potential energy landscape (PEL) [7]. For
glass-forming liquids and other disordered systems such
as spin glasses [8] in general, a generic feature of the PEL

is the existence of a large number of local minima in it, so
that the potential energy surface has very rough topog-
raphy. At low temperature, in the supercooled regime,
the system visits the neighborhood of a local minimum
for very long times and makes occasional jumps to other
minima close to the initial one over the barriers sepa-
rating them. Following this description, Stillinger and
Weber [9–11] showed that a useful approach towards the
understanding of the low-temperature properties of such
system with a rugged PEL is to divide the configuration
space into basins of attraction of the local minima and
then formulate a statistical description in terms of the
distributions of different properties of these local minima,
denoted as inherent structures (IS), and their basins of
attraction. Stillinger also suggested [12] a rationale for
the difference between strong and fragile liquids based
on the PEL viewpoint. According to his idea, strong liq-
uids have a uniformly rough PEL and there is not much
variation in the values of the energy barriers separating
different inherent structures. On the contrary, the PEL
of fragile liquids have non-uniform roughness. At high
temperatures, the system explores a PEL with nearly
uniform roughness due to its high kinetic energy, but at
lower temperatures it explores the deep valleys with very
different energy barriers, giving rise to a temperature-
dependent average barrier height. The work of Sastry
et al. [13] demonstrated the usefulness of this descrip-
tion, although the understanding of the dynamics in this
approach still remains qualitative to a large extent.

After early work [9, 10] on the implementation of a
description based on inherent structures by supplement-
ing conventional Molecular Dynamics (MD) simulations
[14] with regular steepest-descent minimizations of the
potential energy (called quenches) and thereby sampling
the inherent structures, a large amount of activity has
gone into the field in recent years and a variety of meth-
ods have been suggested to make the survey of the PEL
more efficient [7]. Once the inherent structures are sam-
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pled properly, rates of transition between them may also
be calculated and the dynamics of the system can be
described by the evolution of the probabilities of occu-
pying different basins through a master equation [7, 15–
17]. An important assumption behind such an approach
is a separation of time scales i.e. the assumption that
the intra-basin relaxation time τintra and the inter-basin
relaxation time τinter are well separated, τintra ≪ τinter.
This is indeed a good assumption at low temperatures for
which the typical barrier height Eb > kBT . This formula-
tion does not have the usual limitations arising from the
requirement of long simulation times, since the master
equation can be formally solved for all times. However,
for writing down the rates of transition between two min-
ima, we need to sample the barriers or transition states
between them and finding transition states is much more
demanding computationally than finding the local min-
ima. However, in recent years, various methods [7] have
been developed to overcome this difficulty.

The number of minima, nmin for model glass formers
increases exponentially with the number of particles in
the system [12]. So it is impractical to hope to list all the
minima even for a system of moderate size, say one con-
sisting of a few hundred particles. Moreover, the formal
solution of the master equation requires the diagonaliza-
tion of matrix of order nmin ×nmin. Hence, the applica-
bility of this method has been restricted mostly to small
system sizes till now [7]. Alternatively one can organize
a set of inherent structures into larger metabasin [19–21]
and set up a master equation dynamics for transitions be-
tween the metabasin [21]. Another aim of the metabasin
construction is to define a space where the dynamics of
the system point become Markovian, a crucial assump-
tion behind any master equation based description. The
Markovian assumption might break down for elementary
jumps between the basins of inherent structure. However
assigning the rate of transition between two metabasins
is not straightforward as one needs to integrate out the
intra-metabasin dynamics (e.g. jumps between basins in
the same metabasin) in that case. Also, the construction
of the metabasins out of inherent structures is generally
done using somewhat ad-hoc criteria [19–21].

Nevertheless, the long-time, low-temperature dynam-
ics of systems with a small number of particles (say ten to
hundred) interacting via some model potential has been
studied very efficiently using this coarse-grained (in time)
master equation approach since one can make almost ex-
haustive search of all the minima (a few hundreds to sev-
eral thousands) and obtain a moderately good number
of transition states for them [7, 22]. Though small, these
clusters captures many features of the complex dynam-
ics [17] observed in larger systems and hence constitute
a good playground for relating the properties of the PEL
to the dynamics.

In the same spirit, we consider here the master equa-
tion dynamics in a connected network of minima [15],
where the minima serve as the nodes and transition states
as the edges of the network [23]. In Section II, we briefly

review the general formalism [15, 17] for calculating time
autocorrelation functions of various physical quantities
and the corresponding relaxation times based on the mas-
ter equation dynamics in the network of minima. We
show that a quantitative understanding of fragility can
be obtained in this framework from an analysis of elemen-
tary jumps between inherent structures and the effective
barrier Eb(T ) appearing in the temperature dependence
of the relaxation time can be directly calculated from the
local properties of the minima and the transition states
that connect them. We also comment on the breakdown
of Stokes-Einstein [7] relation observed in many glass for-
mers from this perspective.
To test the validity of our results, we study of the equi-

librium dynamics of a cluster of 13 atoms interacting by
the Morse potential [24] in Sections III and IV. The PEL
of this system has been studied in detail in the past [25]
and a nearly exhaustive list of minima and transition
states has been obtained. The PEL resembles a funnel,
in which the minima are organized into pathways of de-
creasing energy leading to the global minimum. This sys-
tem has the nice property of having a complex landscape
that consists of a fairly large but still manageable num-
ber of minima and also displaying some of the salient
features of the complicated dynamics of glassy system,
as we report in Section IV. By restricting the system to
sample certain parts of the PEL excluding a few lowest-
lying minima, we are able to show that the dynamics
of the system in this restricted part of the configuration
space exhibits characteristic behavior of fragile systems,
i.e. Eb(T ) is perceptibly temperature dependent, whereas
the dynamics in the full PEL exhibits strong features.
We have also carried out MD simulation for the 13-atom
Morse cluster. Using simulations in which the MD tra-
jectories are confined [26, 27] in appropriately restricted
parts of the PEL, we are able to substantiate the conclu-
sions of the network model calculation. The results from
MD simulations are discussed and compared with those
obtained from the network model in Section V. Some of
the technical details of the network model calculations
and restricted MD simulations are described in the Ap-
pendices A, B and C.

II. MASTER EQUATION FOR JUMP

DYNAMICS BETWEEN INHERENT

STRUCTURES

The first step in exploring the landscape is to find
the configuration corresponding to the local minima and
the transition states. These are the stationary points or
saddles of the potential energy function V (r1, r2, ..., rN ),
characterized by ∇V = 0 and number of negative eigen-

values of the Hessian matrix H
.
= V αβ

ij = ∂2V

∂rα
i
∂rβ

j

, rαi

being the α-th coordinate of the i-th particle. The eigen-
vector corresponding to each negative eigenvalue of the
Hessian matrix at a stationary point signifies an unsta-
ble direction and stationary points can be indexed by
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the number of such unstable directions. For instance, at
a local minimum, there is no negative eigenvalue and it
can be denoted as saddle of index 0, a transition state as
saddle of index 1 or first-order saddle and similarly there
can be higher order saddle points having index running
from 2 to the dimension of the configuration space. One
can use steepest descent minimization [28] for finding the
minima and transition states can be located efficiently
using the eigenvector following method [29, 30]. Once
the minima and transition states that connect them are
known, we can arrange them by designating as nodes and
edges, respectively, of a network. We describe this pro-
cedure in greater detail later for the specific case of a
13-atom Morse cluster (see also Appendix B).

In the model of a connected network of potential en-
ergy minima, the master equation for the jump dynamics
can be written as

dPa(t; b, t0)

dt
=

∑

c

WacPc(t; b, t0). (1)

Pa(t; b, t0) is the probability that the system is at min-
imum a at time t, if it was at a minimum b at
time t0 and a runs from 1 to nmin, the total num-
ber of minima in the network. The off-diagonal ele-
ments of the matrix W are the transition rates and, as
usual, the diagonal elements are fixed by the condition∑

a Pa(t; b, t0) = 1 implying
∑

a Wac = 0. In order to
obtain an asymptotic behavior (in the long time limit)
that agrees with the Boltzmann distribution, the occupa-
tion probability must satisfy limt→∞Pa(t; b; t0) = P 0

a ≡
Z−1(Det(Ha))

−1/2 exp (−Va/T ). Here, Z is such that∑
a P

0
a = 1 and the pre-exponential factor follows from

a harmonic approximation for the partition function in
the basin of each minimum (we take the Boltzmann con-
stant kB = 1). The matrix Ha is the Hessian matrix
for the a-th minimum. As W ought to satisfy the de-
tailed balance relation WabP

0
b = WbaP

0
a , in numerical

calculation it is more convenient to express the solution
in terms of the eigenvectors of the real symmetric ma-

trix W̃ab ≡ Wab(P
0
b /P

0
a )

1/2. Finally, one can formally
obtain the solution of the master Equation (1) for all

time, i.e. Pa(t; b, t0) = (P 0
a /P

0
b )

1/2
∑

n e
(n)
a e

(n)
b eλn(t−t0).

Here e(n) are the eigenvectros of W̃ corresponding to the

eigenvalue λn (1 ≤ n ≤ nmin). The matrix W̃ has one
zero eigenvalue corresponding to the equilibrium distri-
bution and all other eigenvalues are negative. We shall
follow the convention of arranging λn’s in descending or-
der (ascending order in their absolute values) starting
from λ1 = 0.

The model is well-defined once we give an appropriate

expression for the transition or hopping matrix W̃ be-
tween the nodes of the network of minima, Treating the
problem as a Markovian Brownian multi-dimensional mo-
tion in the over-damped friction regime [31–33], we can
write the transition rates between a directly connected
or nearest-neighbor pair of minima, < ab >, from b to a

over the saddle s as

W s
ab =

ω̃2
s,ab

µ

√
Det(Ha)

|Det(Hs
ab)|

e−
V s
ab

−Vb
T . (2)

Here, ω̃s,ab is the down frequency at the saddle point
i.e. ω̃2

s,ab = Λs
ab, Λs

ab being the magnitude of negative
eigenvalue of the Hessian matrix Hs

ab at the transition
state, µ is the friction constant that sets the time scale
(we take µ = 1 in all our calculation henceforth), and
Vb, V s

ab are, respectively, the potential energies at the
minimum b and the saddle point s between minima a and
b. If there are multiple barriers connecting b and a then
the total transition rate from b to a, Wab is obtained by
summing over all the barriers i.e. Wab =

∑
s∈<ab> W s

ab.

A. Correlation function

To study the dynamics and calculate relevant relax-
ation times in the network model, one needs to de-
fine the equilibrium time autocorrelation function of
some physical quantity, say φ(r(t)), a generic observ-
able which depends on the collective coordinate r(t) =
{r1(t), r2(t), ..., rN (t)} at times t. In this language, the
time autocorrelation function can be written [15, 16] as

〈φ(r(t))φ(r(t0))〉 = 〈Φ(t, t0)〉 = Cφ(t, t0)

=
∑

b

P 0
b

∑

a

ΦabPa(t; b, t0)

= C0
φ +

∑

n≥2

eλn(t−t0)
∑

a,b

Φab(P
0
aP

0
b )

1/2e(n)a e
(n)
b . (3)

Here Φab = Φ(ra, rb) = φ(ra)φ(rb) and C0
φ =∑

a,b ΦabP
0
aP

0
b . Also, Cφ(t = t0, t0) =

∑
a ΦaaP

0
a and

limt→∞ Cφ(t, t0) = C0
φ are short-time and long-time lim-

its of the correlation function Cφ(t, t0), respectively.
Once the correlation function is calculated, the relax-

ation time can be estimated by assuming a pure Debye
(single exponential) relaxation, such that C̃φ(t − t0) =

Cφ(t, t0) − C0
φ ≡ C̃φ(t0) exp (−(t− t0)/τ

e
φ) and evaluat-

ing the area under the resulting curve from Eq.(3), i.e.

τeφ = −

∑
n≥2

1
λn

∑
a,b(P

0
aP

0
b )

1/2Φabe
(n)
a e

(n)
b∑

n≥2,a,b(P
0
aP

0
b )

1/2Φabe
(n)
a e

(n)
b

. (4)

This way of defining the relaxation time relies on the as-
sumption that the decay of CΦ(t−t0) is well described by
a single exponential, but in glassy systems the temporal
decay of correlation often follows a profile that is more
complex than a simple exponential. The precise form of
the decay is usually not known, although it can be fitted
with the empirical Kohlrausch-Williams-Watts (KWW)
or stretched exponential function [34, 35]

C̃φ(t) = C̃0
φe

−(t/τφ)
β

(5)
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in many cases. Here τφ is a measure of the relaxation
time and β is the KWW (or stretching) exponent. The
above form [Eq.(5)] and other typical features of glassy
dynamics such as the decoupling of transport coeffi-
cients (i.e. the violation of the Stokes-Einstein relation
η ∝ T/D, η and D being the viscosity and diffusion coef-
ficient, respectively) can be rationalized from the hypoth-
esis of the existence of a distribution of time scales that is
not sharply peaked at a particular value. A distribution
of time scales may arise e.g. from dynamical heterogeneity

that describes spatial variations of the local relaxational
dynamics (i.e. the fact that different parts of the sample
may have different relaxation times). Given a distribu-
tion of relaxation times, ρφ(τ), the temporal decay of a
typical time autocorrelation function, reflecting the ef-
fects of all these relaxation processes, is given by

C̃φ(t) =

∫ ∞

0

e−(t/τ)ρφ(τ)dτ, (6)

and one can easily show that this results in a stretched
exponential form for an appropriate distribution ρφ(τ).
In the present master equation framework, a distribution
of relaxation time is naturally provided by the different
modes n = 2, ..., nmin and one can identify the contri-
bution or weight [similar to ρΦ(τ) in Eq.(6)] of the n-th
mode as

w
(n)
φ =

∑
a,b(P

0
aP

0
b )

1/2Φabe
(n)
a e

(n)
b∑

n≥2,a,b(P
0
aP

0
b )

1/2Φabe
(n)
a e

(n)
b

, (7)

where τn ≡ |λn|−1 is the relaxation time corresponding
to the n-th mode. A distribution of relaxation times
in the jump dynamics on the PEL appears due to a het-

erogeneous distribution of barrier heights contributing to
different relaxation channel n. Though the origin of non-
exponential relaxation due to a broad distribution of re-
laxation times in the master equation based framework
looks superficially similar to that due to dynamical het-
erogeneity mentioned above, the precise correspondence
between the heterogeneity of barrier heights in the con-
figuration space and dynamical heterogeneity in the real
space is not very clear.
As shown in Appendix A, one can utilize Eq.(7) to

directly calculate the temperature dependent activation

energy Eb(T ) [or, more precisely Eφ
b (T )] to a good ap-

proximation and a quantitative measure, namely Wφ
ab, of

the participation of individual barriers (or the pairs of
minima that are connected by the barrier) in the relax-
ation process. We have tested these results [Eqs. (A2a)
and (A2b) in Appendix A] for the case of 13-atom Morse
cluster in Section IV.

B. Structural relaxation

Since we are mainly interested in structural relaxation
of the system as its state point explores different regions

of the PEL, we look for the time autocorrelation function
of quantities related to the configurations of the min-
ima. One such quantity whose autocorrelation function
and related relaxation time is of much interest in glass
physics is the off-diagonal microscopic stress tensor [36],

i.e. σαβ ≡
∑

i v
α
i v

β
i −

∑
i<j V

′(rij)(r
α
ijr

β
ij/rij) (α 6= β).

Here, vαi and rαij are the α-th components of the velocity
of the i-th particle and rij ≡ ri − rj , respectively, while

V ′(r) = ∂V (r)
∂r . Since the velocity vi is not defined in the

model, following reference [15], we neglect the kinetic en-
ergy term and work with the following quantity

σαβ = −
∑

i<j

V ′(rij)
rαijr

β
ij

rij
. (8)

Consequently, we can calculate the stress-stress auto-
correlation function Cσ(t) = (1/3)

∑
α<β〈σ

αβ(t)σαβ(0)〉
from Eq.(3) where we need to insert Φab =∑

α<β σ
αβ
a σαβ

b . The shear viscosity, η ∝ T−1
∫∞

0 dtCσ(t),
is related to the stress autocorrelation function. We
compute another correlation function, termed as over-

lap function Cδ(t), by setting Φab = Φ(r(t) ∈ Ba, r(0) ∈
Bb) = δab in Eq.(3) to meaningfully compare the pre-
diction of the network model with MD (see Section V).
The basin of attraction Ba of the a-th minimum is the
set of state points that flow to the a-th minimum un-
der steepest descent minimization and δab is the usual
Kronecker delta function. The correlation function Cδ(t)
decays solely due to transitions between inherent struc-
tures and it can be calculated from MD simulation as we
show in Section V.

C. Diffusion constant and waiting times

The diffusion constant D can be calculated from
the mean square displacement 〈R2(t)〉 using R2

ab =

N−1
∑N

i=1 |r
(a)
i − r

(b)
i |2 in place of Φab in Eq.(3)

(r
(a)
i denotes the position of the i-th particle in the

a-th minimum) and invoking the definition D ≡

limt→∞
<R2(t)>

6t = limt→∞
1
6
d<R2(t)>

dt . This def-
inition would yield D = 0 here as D =

limt→∞

∑
a,b,n λn(P

0
aP

0
b )

1/2R2
abe

(n)
a e

(n)
b exp (−|λn|t) = 0.

In other words, 〈R2(t)〉 ∼ tα(t) and limt→∞ α(t) = 0.
Instead, we can define the diffusive regime as the time
window over which α(t) ≃ 1 and then extract D from
the slope of the 〈R2(t)〉 vs. t plot in this region. This
may not be useful for confined systems like the atomic
cluster considered here, since such a diffusive regime may
be very short or absent altogether, rendering D to be an
ill-defined quantity. Nevertheless, in this model we can
define D from the initial slope of the 〈R2(t)〉 vs. t curve
as the usual ballistic regime (〈R2(t)〉 ∝ t2), seen for in-
stance at very short times in MD simulations, is absent
by definition. So, we may define the diffusion constant
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FIG. 1: The essential PEL details, that go into the calculation of transition rates [Eq.(2)], are shown. Panel a: Histogram of
IS energies. Panel b: Dependence of the overall curvature of a minimum on its energy. Panel c: Heights of the lowest energy
barriers for going from minimum a (with potential energy Va) to minimum b (with potential energy Vb).

as

D ≡ lim
t→0

d〈R2(t)〉

dt
=

∑

a,b

(P 0
aP

0
b )

1/2R2
abW̃ab. (9)

The waiting time in the basin of a minimum is the
amount of time the system spends between an entry into
and the subsequent exit from the basin (i.e. during a sin-
gle visit to the basin). The average of this quantity for
the a-th minimum, 〈τw(Va)〉, can be calculated both from
MD simulations and in the network model. In the mas-
ter equation based model it is straightforward to write
〈τw(Va)〉 as

〈τw(Va)〉 ≡ τa = −
1

Waa
. (10)

On the other hand, if we consider an ergodic MD trajec-
tory, then the amount of time the system spends in Ba is
ta ∝ P 0

a . Hence the total number of visits to Ba over the
full trajectory can be written as va ≡ (ta/τa) ∝ (P 0

a /τa).
Finally, the mean waiting time averaged over the whole
landscape would be

τw =

∑
a τava∑
a va

= −
1∑

a P
0
aWaa

. (11)

The above quantity can be related to D [Eq.(9)]
if R2

ab ≃ R̄2 for all pairs of minima, as D ≃

R̄2
∑

a 6=b(P
0
aP

0
b )

1/2W̃ab = −R̄2
∑

a P
0
aWaa = R̄2/τw.

Hence for this special case the hopping between the
basins becomes a random walk with a distribution of
waiting times [37].

III. CONSTRUCTION OF THE NETWORK FOR

A 13-ATOM MORSE CLUSTER

The Morse potential [24] can be written in the form

V =
∑

i<j

Vij , Vij = eρ(1−rij/re)[eρ(1−rij/re) − 2]ǫ,(12)

where rij is the distance between atoms i and j, ǫ and re
are the dimer well depth and the equilibrium bond length,
respectively - they simply scale the PEL without affecting
its topology and can conveniently be set to unity and used
as the units of energy and distance. The parameter ρ is a
dimensionless quantity that determines the range of the
potential, with low values corresponding to long range.
We have taken ρ = 4. This potential is widely used to
model inter-atomic interactions in small atomic clusters
or molecules [7]. The reduced unit of time can be set to
(mr2e/ǫ)

1/2, m being the atomic mass.
We follow more-or-less the same procedure (described

briefly in Appendix B) as that mentioned in Ref.[25] for
building the network of minima and transition states.
The network that we obtain consists of 138 minima and
230 transition states connecting them. We have not en-
forced any confining potential to prevent the cluster from
melting - in the temperature range of our interest, the
particles are confined due to interactions among them-
selves (we have discarded minima with maximum inter-
particle separation more than 2.5). The minima and the
transition states around a particular minimum are iden-
tified by the values of their potential energy.
In Fig.1 a, the distribution of inherent structure en-

ergies is shown. We index the inherent structures in as-
cending order of energy. The lowest lying minimum (the
global minimum) is at Va = −46.635 and after a substan-
tial gap there are three minima at Va ≃ −43.5; after that,
another perceptible gap is present and the rest of the
minima are closely spaced for Va

>
∼ − 42.5. Henceforth,

we denote by Nf the full network and by Nr the net-
work with the four lowest-lying minima removed. When
we remove a particular minimum, all its edges and min-
ima that are connected to the rest of the network solely
through this particular minimum get deducted from the
network as well. As a result, Nr contains 52 minima and
70 transition states.
The overall curvature at a minimum, C is obtained

from the determinant of the Hessian matrix at the min-
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imum i.e. C = Det(H). Here the deeper basins are nar-
rower, as is evident from Fig.1 b. Also the number of
barriers and barrier heights increase with decreasing IS
energies (Fig.1 c).
In the next section we describe the results of the master

equation based calculations carried out with the networks
Nf and Nr. While the relaxation dynamics in Nf is
quite similar to that of strong glass formers, the dynamics
in Nr shows strong resemblance to that of fragile ones.
Although Nr is a part of Nf , the relaxation of the system
restricted in this part of the configuration space becomes
qualitatively very different from the global dynamics in
Nf .
The procedure of searching for transition states (Ap-

pendix B) starting at a minimum and moving along di-
rections of successively larger eigenvalues of the Hessian
matrix is not very efficient [22] and most of the time,
one ends up at the same transition state. Hence we get
only 3 barriers around a minimum on the average. Al-
though the details of the connectivity of the network may
matter for finer details, our main objective in this work
has been to realize the typical characteristics of glassy
dynamics with a minimal set of minima and transition
states. Hence we have not paid much attention to build-
ing the network very accurately so as to represent the
actual system. Nevertheless, the network model seems
to capture the main features of the complex long-time
dynamics quite accurately, as verified through MD sim-
ulations (Section V).

IV. STRONG AND FRAGILE BEHAVIOR IN

THE NETWORK MODEL

Here we describe the results for the stress-stress auto-
correlation function Cσ(t), as described in Sec.II B, for
the Morse cluster.
Fig.2 a showsCσ(t) for the networkNf at four different

temperatures. The decay of the correlation function is
very well described by a single exponential [the stretching
exponent of Eq.(5), β ≃ 1] over the entire temperature
range, as is evident from the inset of Fig.2 c. The origin of
this simple Debye-like relaxation can be attributed to the
presence of a single relaxation mode with a large weight

w
(n)
σ [Eq.(7)] as shown in Fig.2 b. The corresponding

relaxation time τσ extracted by fitting Cσ(t) with Eq.(5)
follows an Arrhenius temperature dependence (Fig.2 c),
i.e.

τσ = τ0σ exp

(
Eb

T

)
(13)

In Nf , the dynamics is mainly governed by the barri-
ers connecting the global minima at Va ≃ −46.6 with
the next three lowest lying minima at Va ≃ −43.5 (see
Section III).
The Arrhenius fit to τσ vs. T curve yields an effective

activation barrier Eσ
b = 0.24 which one can easily iden-

tify with the barrier for going from one of the minima
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FIG. 2: Stress autocorrelation function for the network Nf

(Section III). Panel a: Cσ(t) [normalized by dividing with
Cσ(0)] is shown for various T . Panel b: Decay of Cσ(t) is
determined by one dominant relaxation mode n over the en-
tire temperature range of interest, as is evident from the plot

of w
(n)
σ vs. |λn|

−1 [Eq.(7)] for T = 0.10, 0.25. Panel c: Ar-
rhenius plot for τσ(T ) [extracted by fitting Cσ(t) with the
KWW form of Eq.(5)] i.e. ln τσ vs. 1/T . The effective bar-
rier Eσ

b is obtained by fitting the data to the Arrhenius form
[Eq.(13)]. The stretching exponent β ≃ 1 (inset) confirms the
simple exponential nature of the decay. Panel d: The esti-
mate of Eq.(A2a) (Appendix A) for Eσ

b agrees very well with
the value of Eσ

b = 0.24 obtained from the Arrhenius fit shown
in panel c.

at Va ≃ −43.5 to the global minimum. The estimate
for Eσ

b (Fig.2 d) obtained from Eq.(A2a) (Appendix A)
agrees very well with the above value. In contrast, we
find that the barrier for going from the global minimum
to the next lowest lying minimum determines the effec-
tive activation barrier that appears in the T -dependence
of the mean waiting time τw [Eq.(11)]. This is a natural
consequence of the fact that the global minimum, being
much lower in potential energy with respect to the other
minima in this case, possesses almost all the Boltzmann
weight. As a result, the relaxation to equilibrium (decay
of correlation) is entirely dictated by the relaxation paths
from other parts of the PEL to the global minimum. The
mean waiting time τw, on the other hand, is decided by
the escapes from the global minimum over the barriers
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surrounding it as the system spends most of the time in
the basin of the global minimum.
The above observations suggest a trivial route for re-

alizing strong behavior, namely dynamics governed by
a fixed set of barriers surrounding a very deep inherent
structure (or a set of inherent structures with very simi-
lar potential energies in a more general case) possessing
most of the Boltzmann occupation probability. Keeping
this fact in mind we construct the network Nr by remov-
ing a few deep minima so that a larger number of minima
figure in the relaxation to equilibrium due to compara-
ble Boltzmann weights in the activated regime and many
different barriers contribute to the relaxation process.
Fig.3 a exhibits Cσ(t) calculated for Nr. We observe a

two-stage, non-exponential relaxation in this case. This,

again, can be understood from the values of w
(n)
σ (Fig.3

b). The profile of Cσ(t) is well fitted with a sum of two

stretched exponentials, i.e. Cσ(t) = C
(1)
σ (t) + C

(2)
σ (t) =

C
(1)
σ (0)e−(t/τ (1)

σ )β1
+ C

(2)
σ (0)e−(t/τ (2)

σ )β2
. We plot the

longer of the two relaxation times, τ
(2)
σ , in Fig.3 c along

with the exponent β2 in the inset. The deviation from
simple exponential behavior is evident. The temperature

dependence of τ
(2)
σ exhibits marked deviation from the

simple Arrhenius behavior. Rather, the Vogel-Fulcher-
Tammann (VFT) form [38–40],

τσ = τ0σ exp

(
Bσ

T − T σ
0

)
, (14)

frequently used for fragile glass formers, yields a much

better representation of the data for τ
(2)
σ . The fragile

nature of the ln τ
(2)
σ vs. 1/T curve is well reproduced in

Fig.3 d by the effective temperature dependent barrier
Eσ

b (T ) calculated from Eq.(A2a).
A useful visualization and understanding of the ob-

served strong behavior for the PEL Nf and fragile be-
havior for Nr can be achieved by looking at the quantity
Wab defined in Eq.(A2b) and the subsequent paragraph
of Appendix A. This quantity, Wab, can be thought of
as the weight with which the edges between the nodes a
and b, or in other words, the elementary jumps over the
barriers connecting minima a and b appears in the re-
laxation process through various relaxation channels or
modes n. In Figs.4 a, b and c we have shown the color
maps of Wab for Nf at three temperatures. In these
plots, the coordinates (Va, Vb) represent the barrier be-
tween minima a and b and the color corresponds to the
value of Wab at (Va, Vb) (we have used a small broaden-
ing for the purpose of visualization). It is clear from the
plots that only a few barriers surrounding the global min-
imum contribute substantially to the relaxation process
and over the entire temperature range, the peaks remain
at nearly the same positions. On the contrary for Nr, in
Figs. 4 d, e and f, many barriers figure in the activated
relaxation and the picture changes substantially with in-
creasing temperature, as more and more barriers start to
play a role in the relaxation process. This feature can be
considered as the trademark of fragile dynamics.
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FIG. 3: Stress autocorrelation function in Nr. Panel a: Cσ(t)
is shown for five T values. Panel b: Fit to a sum of two
stretched exponentials (Eq.(5), see the text for details) at

T = 0.08. The quantity w
(n)
σ exhibits the presence of (well-

separated) multiple timescales even at the very low tempera-
ture T = 0.08. Panel c: The deviation from the simple Arrhe-

nius form is evident from the plot of ln τ
(2)
σ vs. 1/T . Fits to

both the Arrhenius form [Eq.(13)] and the VFT form [Eq.(14)]
are shown. It is clear that the VFT form provides a good fit.
Inset: The exponent β2 is much less than 1, specially at low
temperatures, showing the non-exponential nature of the re-
laxation. Panel d, The effective barrier Eσ

b (T ) obtained from
Eq.(A2a) agrees reasonably well with the estimate deduced
from the Arrhenius and VFT fits. For instance, the VFT fit
to exp (Eσ

b /T ) vs. 1/T yields values for the parameters Bσ

and T σ
0 [Eq.(14)] that are similar to those obtained in panel

c.

We have observed similar characteristics of strong and
fragile dynamics for the relaxation time τδ associated
with the overlap function Cδ(t), defined in Section II B,
obtained from both the network model calculation and
MD simulations. We report these results in the next sec-
tion.
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FIG. 4: Color maps (see the color bars) for Wab [Eq.(A2b)] in the (Va, Vb) plane for Nf at three temperatures, T = 0.15 (panel
a), T = 0.20 (panel b), and T = 0.25 (panel c), and for Nr at T = 0.15 (panel d), T = 0.22 (panel e), and T = 0.28 (panel f).

V. COMPARISON OF THE RESULTS OF THE

NETWORK MODEL WITH THOSE OF MD

We have carried out MD simulations [14] for the
cluster of 13 particles interacting via the Morse poten-
tial [Eq.(12)]. Initial long MD runs along with regular
quenching provide the starting data base of minima and
then we follow the procedure of Appendix B to improve
the list as well as to construct the network of minima
and transition states. The main motivation of our MD
study is to check to what extent the dynamics of the
systems is captured by the network model by compar-
ing the results of the network model calculation with
those for the real dynamics (i.e. Newton’s equation of
motion). We find that the main results of the network
model calculation are supported both qualitatively and
quantitatively by the MD results. As already discussed
in the introduction, the model assumes that there is a
clear separation between the time scales of local vibra-
tions and activated jumps. This assumption is bound to
be valid at very low temperature where the barriers are
much higher than the temperature. However, the barrier
heights have a wide distribution (Fig.1 c) and hence the
assumption of well separated time scales may be invali-
dated at different temperatures for different parts of the
landscape. Presumably, as the temperature is increased,
the dynamics crosses over from a landscape dominated
regime at low temperatures to a high-temperature regime

where the system does not see the details of the PEL due
to its large thermal energy and the dynamics is no longer
dominated by activation processes.

We have calculated the stress autocorrelation function
Cσ(t) and the overlap function Cδ(t) (Sec.II B) from MD
simulations at different temperatures. Also, we have esti-
mated the mean waiting times and waiting time distribu-
tions. We find that due to intra-basin relaxation present
in MD, the stress autocorrelation function Cσ(t) decays
within the vibrational time periods of the local minima
much before the inter-basin jump dynamics comes into
play. As a result, Cσ(t) is not useful for comparison
with the network model results. Hence we concentrate on
Cδ(t) and the related relaxation time since by definition
the decay of Cδ(t) is entirely determined by inter-basin
transitions. For calculating this quantity as well as the
waiting times for different minima, we construct a discon-
tinuous trajectory in terms of configurations of inherent
structures from the MD trajectory and track the transi-
tions along it by the interval bisection method described
in reference [19] [see Appendix C].

For comparing the results obtained for Nr (Sec.III),
additionally, we need to confine the MD trajectories in
a restricted part of the configuration space so that the
basins of the four lowest-lying minima are not visited
(see Appendix C). This goal is achieved by applying a
procedure similar to that described in Refs [26, 27]. The
application of this method in conjunction with the in-
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FIG. 5: Overlap function Cδ(t) for the network Nf . Panel a:
(Cδ(t)−C0

δ )/(Cδ(0)−C0
δ ) obtained from the network model

for four temperatures. Panel b: MD results for Cδ(t). Panel
c: Arrhenius plot for τδ(T ) deduced in a from KWW fits
[Eq.(5)]. The top and bottom insets show, respectively, the
estimates of Eδ

b (T ) from Eq.(A2a) and the stretching expo-
nent β for the KWW fit to Cδ(t) in a. Panel d: Estimates
of τδ can be obtained accurately only for a narrow tempera-
ture range in MD, as discussed in the text. The exponent β,
extracted from b, is shown in the inset.

terval bisection method makes the MD runs very time
consuming and hence it is difficult to get very long MD
trajectories (typically 108 or 109 MD steps with the MD
step length δt = 0.001). So we have averaged over many
parallel runs with smaller number of MD steps (2×107 for
Nf and 2× 106 to 2× 107 for Nr, depending on the tem-
perature) starting from different parts of the landscape
i.e. different initial conditions (different IS configurations
are taken from the already existing data base).
We compare the results for Cδ(t) obtained through the

network model for Nf and Nr with those obtained via
isokinetic MD [14] in Figs.5 and 6, respectively. Fig.5
a shows the network model results for Cδ in Nf . Cor-
responding MD results are shown in Fig.5 b. The Ar-
rhenius plots for associated relaxation times are shown
in Figs.5 c and d. The strong behavior is evident and
decays of Cδ(t) in both the cases are close to exponen-
tial (β ≃ 0.9) as exhibited in the insets of these figure
panels. A good estimate of the effective activation en-
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FIG. 6: Overlap function Cδ(t) for the network Nr. Panel
a: Cδ(t) calculated in the network model exhibits multi-step
decay of correlation. Panel b: Cδ(t) as obtained by confining
the MD trajectory in a part of the configuration space that
excludes the basins of attraction of the first four lowest-lying
inherent structures. Panel c: The intermediate relaxation
time τ

(2)
δ obtained by fitting the data for Cδ(t) in a with the

sum of three stretched exponentials. Here the ln τ
(2)
δ vs. 1/T

plot shows a small bending indicating deviations from the
Arrhenius T -dependence. The VFT fit is also shown. the up-
per and lower insets show, respectively, the Eδ

b (T ) calculated
from Eq.(A2a) and the exponent β2 from the fits to Cδ(t) at
different temperatures. d, The results for τδ(T ) obtained in
MD simulations agree with the fragile behavior observed in
the network model. The semiquantitative agreement can be
verified by comparing the VFT fits for τδ(T ) in the network
model and in MD.

ergy is once again obtained from Eq.(A2a) (inset of Fig.5
c). Here the effective barrier Eδ

b ≃ 0.25 is comparable
to T in the temperature range of interest and hence the
associated time scale for relaxation is quite short. Even
then, an accurate calculation of the correlation function
Cδ(t) and the relaxation time τδ in MD is quite diffi-
cult because the system gets trapped in the deep global
minimum most of the time and a proper sampling of the
relevant relaxation paths connecting the higher minima
to the global one becomes hugely time consuming and
increasingly difficult with decreasing temperature. As a
result we can estimate τδ only for a limited range of tem-
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peratures, as shown in Fig.5d. Also for temperatures
higher than T ≃ Eδ

b ≃ 0.25 the network model deal-
ing only with the activated processes becomes unreliable,
rendering a comparison with MD results inappropriate.

For the network Nr, Cδ(t) exhibits a three-stage re-
laxation profile (Fig.6 a) owing to the presence of well-
separated time scales similar to the case of Cσ(t) (Fig.3
b). Such a clear cut separation of timescale is not ob-
served in the corresponding microcanonical MD [14] re-
sults for Cδ(t) shown in Fig.6 b, although a faint sig-
nature of multi-step relaxation can be seen at low tem-
peratures. The decays of Cδ(t) at various temperatures,
shown in Fig.6 a, are fitted to a sum of three stretched
exponentials [Eq.(5)]. The temperature dependence of

the intermediate relaxation time τ
(2)
δ (T ) shows deviations

from the Arrhenius form [Eq.(13)] in Fig.6 c, although

much less in extent than that for τ
(2)
σ (T ) (Fig.3 c). The

latter fact is indicative of the importance of the quan-
tity Φab of Eq.(3), i.e. the quantity whose autocorrela-
tion function is used to calculate the relaxation time, in
determining the degree of fragility obtained from the tem-
perature dependence of the relaxation time. As discussed
above, the distribution and temperature dependence of

the quantities Wφ
ab, which depend on the quantity φ(r)

whose autocorrelation function is used to calculate the re-
laxation time (see Appendix A), play an important role
in determining the degree of fragility. We have checked
that plots ofWab for the overlap function, similar to those
shown in Fig. 4, exhibit a less pronounced dependence on
the temperature. This is consistent with the observation
that the temperature dependence of the relaxation time
extracted from the decay of the overlap function exhibits
smaller deviations from the Arrhenius form (lower degree
of fragility) in comparison to that for the relaxation time
obtained from the stress autocorrelation function. The
Arrhenius fit parameter Eδ

b and VFT fit parameters Bδ

and T δ
0 are shown in Fig.6 c. These agrees reasonably

well with the results of similar fits done for τδ estimated
through MD simulations (Fig.6 d).

VI. CONCLUSION

Our work shows that the master equation based ap-
proach, first proposed by Angelani et al.[15], for the
landscape dominated activated dynamics on a network
of minima and transition states is capable of addressing
many important issues and challenges related to glassy
dynamics. Our results for the full network Nf are simi-
lar to those of Refs.[15, 16] where strong behavior in the
dynamics, arising from the dominance of the global mini-
mum and the barriers surrounding it, was observed. Our
study of the restricted network Nr leads to the impor-
tant result that the master equation approach may lead
to fragile dynamic behavior if many inherent structures
and the barriers between pairs of them are involved in
the relaxation process. This conclusion is confirmed by

our MD simulations. Our study, thus, provides valuable
insights into the origin of fragile dynamic behavior in
glass-forming liquids. It also illustrates the usefulness of
the master equation approach in studies of glassy dynam-
ics. Due to computational constraints, the applicability
of this approach has been limited to small system sizes
till now. A related approach [41] that differs from the
one considered here in the details of its implementation
seems to be a promising one for studying larger systems.
Another interesting future direction for studying moder-
ately large systems might be to extend this framework for
the dynamics in the metabasin space to obtain quantities
relevant for the characterization of glassy dynamics.
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Appendix A: Effective activation energy

As mentioned in Section IIA, τn = |λn|
−1 is the re-

laxation time corresponding to the n-th mode (n ≥ 2)

and w
(n)
φ [Eq.(7)] provides the distribution of such re-

laxation times. We assume that the relaxation time for
each individual mode is governed by an effective barrier

E
(n)
b i.e. τn ∝ exp (E

(n)
b /T ). Hence we can estimate E

(n)
b

approximately from the local slope of the ln τn vs. 1/T
curve as follows

E
(n)
b ≃ −

1

λn

∂|λn|

∂(1/T )

≃
1

|λn|

∑

<ab>,s

[
(V s

ab − Va)(U
(n)
s,a )

2 + (V s
ab − Vb)(U

(n)
s,b )

2

−2(V s
ab −

Va + Vb

2
)U (n)

s,a U
(n)
s,b

]
(A1a)

with

U (n)
s,a = (Λs

ab)
1/2

[
Det(Ha)

Det(Hs
ab)

]1/4
e−

V s
ab

−Va

2T e(n)a (A1b)

To obtain the expression (A1a) for E
(n)
b we have rewritten

λn as
∑

a,b W̃abe
(n)
a e

(n)
b and while taking the derivative of

λn with respect to T neglected the temperature depen-
dence of the eigenvector e(n) assuming it to be weakly
temperature dependent. We find this to be valid for the
case of the 13-atom Morse cluster and the above approx-

imation for E
(n)
b seems to work, as we have reported in

Sections IV and V. The overall effective activation energy

Eφ
b (T ) is obtained by summing over the contributions of

all the modes appearing with the weights w
(n)
φ [Eq.(7)],

i.e. Eφ
b ≡

∑
n≥2 E

(n)
b w

(n)
φ . This can be recast as

Eφ
b =

∑

<ab>

Wφ
<ab>E

φ
<ab> (A2a)
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here,

Wφ
<ab> ≡

∑

s

Wφ
s,<ab> (A2b)

Eφ
<ab> ≡

∑
s E

φ
s,<ab>∑

s W
φ
s,<ab>

(A2c)

with

Wφ
s,<ab> =

∑

n≥2

|λn|
−1w

(n)
φ (U (n)

s,a − U
(n)
s,b )

2

Es,<ab> =
∑

n≥2

|λn|
−1w

(n)
φ

[
V s
ab(U

(n)
s,a − U

(n)
s,b )

2

−(VaU
(n)
s,a − VbU

(n)
s,b )(U

(n)
s,a − U

(n)
s,b )

]

The effective barrierEφ
b (T ) obtained from Eq.(A2a) com-

pares quite well with the barrier extracted from the T -
dependence of the relaxation time τφ estimated by fitting
the KWW form [Eq.(5)] to the correlation function Cφ(t),
computed using Eq.(3) for the Morse cluster. The quan-

tity Wφ
ab = Wφ

ba ≡ Wφ
<ab>/2 can be a good measure of

the relative importance of a pair of minima or an elemen-

tary jump in the relaxation process as demonstrated in
Section IV.

Appendix B: Construction of the network of minima

and transition states

As mentioned in Sec.III, we follow the procedure simi-
lar to that in Ref. [25] for building the network model for
the 13-atom Morse cluster. We have used the OPTIM
package [30], developed by D. J. Wales and co-workers,
to search for minima and transition states as follows

1. Do long MD simulations and steepest descent
quenches in regular intervals to reach nearby min-
ima along the MD trajectories. Distinction between
configurations of minima is done in terms of their
potential energy values. This provides us with an
initial data base or list of minima.

2. Starting from each of these minima, one by one,

(a) search for a transition state along the eigen-
vector with the lowest eigenvalue.

(b) After reaching a transition state, do steepest
descent minimization starting parallel to the
transition vector, i.e. eigenvector correspond-
ing to the negative eigenvalue, at the transi-
tion state to arrive at the minima connected
directly to initial one (sometimes, following
the eigenvector from a minimum we obtain
states which are not connected to it by steep-
est descent - we discard these states). This
establishes one edge, constituted of a pair of
minima connected by a transition state, of the
network.

(c) Repeat (a) beginning anti-parallel to the
eigenvector with the lowest eigenvalue and
then successively in both directions along
eigenvectors with ascending eigenvalues until
all the eigendirections are considered at the
starting minimum.

(d) If some new minima, not in the starting list,
are found in this process we append them to
the data base and modify the existing list of
minima.

3. Repeat 2 until all the minima in the data base are
searched.

Appendix C: Interval bisection and confinement of

MD trajectories in a specified part of the PEL

Starting from a MD trajectory, r(t) =
(r1(t), r2(t), ..., rN (t)), we construct a trajectory
r0(t) = (r01(t), r

0
2(t), ..., r

0
N (t)) in terms of the inherent

structure configurations by doing steepest descent
minimization at regular intervals [19]. The straightfor-
ward way, though computationally impractical, is to
do minimization at every time step. Also there may
be many back and forth jumps between neighboring
minima giving rise to events that do not affect the
long time relaxation which we are mainly interested in.
Bearing this fact in mind, we do quenches for equidistant
points, tn = n∆t (n being an integer) to get r0(tn) with
∆t = 100− 200 MD steps (around 1/10-th of the typical
vibrational period at a minimum for the Morse cluster).
During a MD run, starting from initial point (n = 0),

1. Save the trajectory r(t) between ti = tn and tf =
tn+1 and then follow the steps described below pro-
vided r0(ti) 6= r0(tf ) (actually we compare V (r0)
instead of r0),

(a) Set tm = (ti+tf )/2 and get r0(tm) from r(tm).

(b) If r0(tm) = r0(ti), set ti = tm else set tf = tm.

(c) Go on repeating steps (a) and (b) until tf −
ti = 1.

2. Change n to n+ 1 and go back to 1.

Next we describe the method that we have adopted
for restricting the trajectory of the state point of the
system to a part of the configuration space. This is an
extension of the interval bisection method described in
the preceding paragraph. The trajectory is constructed
part by part successively and in each part, whenever we
detect a transition (using the interval bisection method)
from the allowed part to forbidden part (say the part
containing the basins of attraction of the four lowest-
lying minima with Va < −43 in the case of the 13-atom
Morse cluster), we re-initiate the MD at the point when
the system last visited the allowed part using new ve-
locities for the particles. We assign random velocities
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drawn from a Maxwell distribution at temperature T [in
the case of microcanonical simulation at constant Etot,
the temperature is obtained from the total kinetic en-
ergy at the instant when the system last visited the al-
lowed part i.e. T = 2(Etot − V )/(3N − 6)]. After each
such re-initiation we correct for the integrals of motion
i.e. energy, momentum and angular momentum by suit-
able rescaling and rotation of the velocities.
Under this procedure the dynamics no longer remains

truly Newtonian due to repeated velocity re-initiations.
We have calculated the velocity autocorrelation function
which decays very fast (within 2000 MD steps i.e. ∼1-2
vibrational periods) and heuristically we can argue that
successive velocity re-initiations are more or less uncor-
related. Nonetheless, following reference [27] we have
performed a few standard checks by computing quanti-
ties that can be accessed through the above mentioned
confined MD as well as through the regular unrestricted
MD procedure and we found good agreement between
the results obtained in these two different ways. For in-
stance, the distributions of the total kinetic energy and
the waiting time for a restricted part of the configura-
tion space (e.g. the basin of attraction of a particular
minimum) can be estimated [27] both by enforcing the

trajectory to sample only the specified part or by picking
out from a conventional long MD trajectory the intervals
during which the system samples the specified part.

We find that there are some spurious effects in the dy-
namics due to cycling of trajectories near the saddles or
the system spending more time near the border of the
allowed and forbidden regions. Also, at low tempera-
tures, when the system is constrained in the high energy
parts such as Nr, it has a tendency to visit the lowest ly-
ing basins more often. In the above mentioned procedure
the system can visit the forbidden region within the small
interval ∆t and come back to the allowed part. We find
these events to affect the properties related to short time
relaxation such as the diffusion constant [Eq.(9)], waiting
time τw [Eq.(11)] and its distribution. While restricting
the system in Nr, as the system frequently escapes to
the four lower lying basins, the barrier that appears in
the temperature dependence of D and τw turns out to
be related to the barriers connecting Nr to the forbidden
low-energy part. However, since these visits are really
short lived (≤ 100 − 200 MD steps), they do not affect
the features of long-time relaxation, such as the decay of
correlations characterized by Cδ(t).
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