79 research outputs found

    SIMULTANEOUS MEASUREMENT OF AIR-EARTH CURRENT AT TWO STATIONS

    Get PDF
    The air-earth current was measured at two stations in Kyoto city simultaneously in the cold season, 1970 through 1971, obtaining the diurnal variation pattern. Cross correlation coefficient was calculated. It is demonstrated that differences of amplitude and phase of variations at the two stations are due to variations of the columnar resistance at each station. It is found that the columnar resistance is sensitively affected by surface wind

    Solar impact on the lower mesospheric subtropical jet: A comparative study with general circulation model simulations

    Get PDF
    The seasonal and interannual variation in the lower mesospheric subtropical jet (LMSJ) and their dependence on the 11-year solar cycle are studied by comparing observational data with simulations by two general circulation models. In the model simulations, a strengthening of the LMSJs is found in both hemispheres during the winter under the solar maximum condition, similar to the observation. However the model responses are substantially smaller except for one case in the southern hemisphere. It is also found that the stronger LMSJ due to an enhanced solar forcing appears during the period which follows an increasing period of interannual variation. Analysis of the observed seasonal march of the LMSJ in each year shows two different regimes of behavior. For a successful simulation, the model should realistically reproduce the observed interannual variability as well as the climatological mean

    Solar forcing synchronizes decadal North Atlantic climate variability

    Get PDF
    Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth’s regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1–2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface

    The Sun's role in decadal climate predictability in the North Atlantic

    Get PDF
    Despite several studies on decadal-scale solar influence on climate, a systematic analysis of the Sun's contribution to decadal surface climate predictability is still missing. Here, we disentangle the solar-cycle-induced climate response from internal variability and from other external forcings such as greenhouse gases. We utilize two 10-member ensemble simulations with a state-of-the-art chemistry–climate model, to date a unique dataset in chemistry–climate modeling. Using these model simulations, we quantify the potential predictability related to the solar cycle and demonstrate that the detectability of the solar influence on surface climate depends on the magnitude of the solar cycle. Further, we show that a strong solar cycle forcing organizes and synchronizes the decadal-scale component of the North Atlantic Oscillation, the dominant mode of climate variability in the North Atlantic region.publishedVersio

    Transfer of the solar signal from the stratosphere to the troposphere: Northern winter

    Get PDF
    The atmospheric response to the solar cycle has been previously investigated with the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) using prescribed spectral solar UV and ozone changes as well as prescribed equatorial, QBO-like winds. The solar signal is transferred from the upper to the lower stratosphere through a modulation of the polar night jet and the Brewer-Dobson circulation. These model experiments are further investigated here to show the transfer of the solar signal from the lower stratosphere to the troposphere and down to the surface during Northern Hemisphere winter. Analysis focuses on the transition from significant stratospheric effects in October and November to significant tropospheric effects in December and January. The results highlight the importance of stratospheric circulation changes for the troposphere. Together with the poleward-downward movement of zonal wind anomalies and enhanced equatorward planetary wave propagation, an AO-like pattern develops in the troposphere in December and January during solar maximum. In the middle of November, one third of eddy-forced tropospheric mean meridional circulation and surface pressure tendency changes can be attributed to the stratosphere, whereas most of the polar surface pressure tendency changes from the end of November through the middle of December are related to tropospheric mechanical forcing changes. The weakening of the Brewer-Dobson circulation during solar maximum leads to dynamical heating in the tropical lower stratosphere, inducing circulation changes in the tropical troposphere and down to the surface that are strongest in January. The simulated tropospheric effects are identified as indirect effects from the stratosphere because the sea surface temperatures are identical in the solar maximum and minimum experiment. These results confirm those from other simplified model studies as well as results from observations

    The impact of tropical tropopause cooling on Sahelian extreme deep convection

    Get PDF
    Previous studies have suggested that the recent increase in tropical extreme deep convection, in particular over Asia and Africa during the boreal summer, has occurred in association with cooling in the tropical lower stratosphere. The present study is focused on the Sahel region of West Africa, where an increased occurrence of extreme precipitation events has been reported over recent decades. The results indicate that the changes over West Africa since the 1980s involve a cooling trend in the tropical lower stratosphere and tropopause layer, combined with warming in the troposphere. This feature is similar to that which might result from increased greenhouse-gas levels but is distinct from the interannual variation of precipitation associated with the transport of water vapor from the Atlantic Ocean. It is suggested that the decrease in the vertical temperature gradient in the tropical tropopause region enhances extreme deep convection over the Sahel, where penetrating convection is frequent, whereas tropospheric warming suppresses the shallower convection over the Guinea Coast. Therefore, the essential feature of the recent changes over West Africa is the depth of convection rather than the total amount of surface precipitation

    北半球冬季の大気大循環と日本周辺の海面水温が日本の気温に与える影響

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    Consideration of the Origin of the Different Midlatitude Atmospheric Responses among El Niño Events

    No full text

    The solar and equatorial QBO influences on the stratospheric circulation during the early northern-hemisphere winter

    No full text
    A case study was conducted to investigate the mechanism of how the solar cycle and the equatorial quasi-biennial oscillation (QBO) influence the stratospheric circulation during the Northern-Hemisphere winter. It was found that the solar and QBO influences on the stratospheric jet exist rather independently in the upper stratosphere during December. The mean-zonal wind anomalies produced in early winter persist by deformation until late winter through wave-mean flow interactions with planetary waves. The modulation effect of the solar influence by the QBO [Labitzke, 1987] takes place during this process
    corecore