107 research outputs found

    Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions

    Get PDF
    Lipid levels in plasma strongly influence the risk for coronary heart disease. To localise and subsequently identify genes affecting lipid levels, we performed four genome-wide linkage scans followed by combined linkage/association analysis. Genome-scans were performed in 701 dizygotic twin pairs from four samples with data on plasma levels of HDL- and LDL-cholesterol and their major protein constituents, apolipoprotein AI (ApoAI) and Apolipoprotein B (ApoB). To maximise power, the genome scans were analysed simultaneously using a well-established meta-analysis method that was newly applied to linkage analysis. Overall LOD scores were estimated using the means of the sample-specific quantitative trait locus (QTL) effects inversely weighted by the standard errors obtained using an inverse regression method. Possible heterogeneity was accounted for with a random effects model. Suggestive linkage for HDL-C was observed on 8p23.1 and 12q21.2 and for ApoAI on 1q21.3. For LDL-C and ApoB, linkage regions frequently coincided (2p24.1, 2q32.1, 19p13.2 and 19q13.31). Six of the putative QTLs replicated previous findings. After fine mapping, three maximum LOD scores mapped within 1cM of major candidate genes, namely APOB (LOD =2.1), LDLR (LOD =1.9) and APOE (LOD =1.7). APOB haplotypes explained 27% of the QTL effect observed for LDL-C on 2p24.1 and reduced the LOD-score by 0.82. Accounting for the effect of the LDLR and APOE haplotypes did not change the LOD score close to the LDLR gene but abolished the linkage signal at the APOE gene. In conclusion, application of a new meta-analysis approach maximised the power to detect QTLs for lipid levels and improved the precision of their location estimate. © 2005 Nature Publishing Group. All rights reserved

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior

    Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

    Get PDF
    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci
    • …
    corecore