43 research outputs found
Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex.
Sall4 is an essential transcription factor for early mammalian development and is frequently overexpressed in cancer. Although it is reported to play an important role in embryonic stem cell (ESC) self-renewal, whether it is an essential pluripotency factor has been disputed. Here, we show that Sall4 is dispensable for mouse ESC pluripotency. Sall4 is an enhancer-binding protein that prevents precocious activation of the neural gene expression programme in ESCs but is not required for maintenance of the pluripotency gene regulatory network. Although a proportion of Sall4 protein physically associates with the Nucleosome Remodelling and Deacetylase (NuRD) complex, Sall4 neither recruits NuRD to chromatin nor influences transcription via NuRD; rather, free Sall4 protein regulates transcription independently of NuRD. We propose a model whereby enhancer binding by Sall4 and other pluripotency-associated transcription factors is responsible for maintaining the balance between transcriptional programmes in pluripotent cells.Wellcome Trust (PhD Studentship; Senior Fellowship in the Basic Biomedical Sciences [098021/Z/11/Z]), Wellcome Trust and UK Medical Research Council core funding to the Cambridge Stem Cell Institute [079249/Z/06/I], European Union Seventh Framework Programme (FP7) Project ā4DCellFateāThis is the final version of the article. It first appeared from The Company of Biologists via http://dx.doi.org/10.1242/dev.13911
The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment.
Multiprotein chromatin remodelling complexes show remarkable conservation of function amongst metazoans, even though components present in invertebrates are often found as multiple paralogous proteins in vertebrate complexes. In some cases, these paralogues specify distinct biochemical and/or functional activities in vertebrate cells. Here, we set out to define the biochemical and functional diversity encoded by one such group of proteins within the mammalian Nucleosome Remodelling and Deacetylation (NuRD) complex: Mta1, Mta2 and Mta3. We find that, in contrast to what has been described in somatic cells, MTA proteins are not mutually exclusive within embryonic stem (ES) cell NuRD and, despite subtle differences in chromatin binding and biochemical interactions, serve largely redundant functions. ES cells lacking all three MTA proteins exhibit complete NuRD loss of function and are viable, allowing us to identify a previously unreported function for NuRD in reducing transcriptional noise, which is essential for maintaining a proper differentiation trajectory during early stages of lineage commitment.Funding to the BH and MV labs was provided through EU FP7 Integrated Project ā4DCellFateā (277899). The BH lab further benefitted from a Wellcome Trust Senior Fellowship (098021/Z/11/Z) and from core funding to the Cambridge Stem Cell Institute from the Wellcome Trust and Medical Research Council (097922/Z/11/Z and 203151/Z/16/Z). The Vermeulen lab is part of the Oncode Institute, which is partly funded by the Dutch Cancer Society (KWF)
Susceptibility or resilience? Prenatal stress predisposes male rats to social subordination, but facilitates adaptation to subordinate status
Mood disorders such as major depressive disorder (MDD) affect a significant proportion of the population. Although progress has been made in the development of therapeutics, a large number of individuals do not attain full remission of symptoms and adverse side effects affect treatment compliance for some. In order to develop new therapies, there is a push for new models that better reflect the multiple risk factors that likely contribute to the development of depressive illness. We hypothesized that early life stress would exacerbate the depressive-like phenotype that we have previously observed in socially subordinate (SUB) adult male rats in the visible burrow system (VBS), a semi-natural, ethologically relevant environment in which males in a colony form a dominance hierarchy. Dams were exposed to chronic variable stress (CVS) during the last week of gestation, resulting in a robust and non-habituating glucocorticoid response that did not alter maternal food intake, body weight or litter size and weight. As adults, one prenatal CVS (PCVS) and one non-stressed (NS) male were housed in the VBS with adult females. Although there were no overt differences between PCVS and NS male offspring prior to VBS housing, a greater percentage of PCVS males became SUB. However, the depressive-like phenotype of SUB males was not exacerbated in PCVS males; rather, they appeared to better cope with SUB status than NS SUB males. They had lower basal plasma corticosterone than NS SUB males at the end of VBS housing. In situ hybridization for CRH in the PVN and CeA did not reveal any prenatal treatment or status effects, while NPY expression was higher within the MeA of dominant and subordinate males exposed to the VBS in comparison with controls, but with no effect of prenatal treatment. These data suggest that prenatal chronic variable stress may confer resilience to offspring when exposed to social stress in adulthood
Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex.
Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The Nucleosome Remodelling and Deacetylation (NuRD) complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. Here we find that while NuRD activity is required for lineage commitment from primed pluripotency in both human and mouse cells, the nature of this requirement is surprisingly different. While mouse embryonic stem cells (mESC) and epiblast stem cells (mEpiSC) require NuRD to maintain an appropriate differentiation trajectory as judged by gene expression profiling, human induced pluripotent stem cells (hiPSC) lacking NuRD fail to even initiate these trajectories. Further, while NuRD activity is dispensable for self-renewal of mESCs and mEpiSCs, hiPSCs require NuRD to maintain a stable self-renewing state. These studies reveal that failure to properly fine-tune gene expression and/or to reduce transcriptional noise through the action of a highly conserved chromatin remodeller can have different consequences in human and mouse pluripotent stem cells
Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge
Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.</p
Insight into the Architecture of the NuRD Complex: Structure of the RbAp48-MTA1 Subcomplex
The nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging. We have investigated the architecture of NuRD by determining the structure of a subcomplex comprising RbAp48 and MTA1. Surprisingly, RbAp48 recognizes MTA1 using the same site that it uses to bind histone H4, showing that assembly into NuRD modulates RbAp46/48 interactions with histones. Taken together with other results, our data show that the MTA proteins act as scaffolds for NuRD complex assembly. We further show that the RbAp48-MTA1 interaction is essential for the in vivo integration of RbAp46/48 into the NuRD complex
Clostridioides difficile infection with isolates of cryptic clade C-II: a genomic analysis of polymerase chain reaction ribotype 151
Objectives: We report a patient case of pseudomembranous colitis associated with a monotoxin-producing Clostridioides difficile belonging to the very rarely diagnosed polymerase chain reaction (PCR) ribotype (RT) 151. To understand why this isolate was not identified using a routine commercial test, we performed a genomic analysis of RT151. Methods: Illumina short-read sequencing was performed on n = 11 RT151s from various geographical regions to study their genomic characteristics and relatedness. Subsequently, we used PacBio circular consensus sequencing to determine the complete genome sequence of isolates belonging to cryptic clades CāI and C-II, which includes the patient isolate. Results: We found that 1) RT151s are polyphyletic with isolates falling into clades 1 and cryptic clades CāI and C-II; 2) RT151 contains both nontoxigenic and toxigenic isolates and 3) RT151 C-II isolates contained monotoxin pathogenicity loci. The isolate from our patient case report contains a novel-pathogenicity loci insertion site, lacked tcdA and had a divergent tcdB sequence that might explain the failure of the diagnostic test. Discussion: This study shows that RT151 encompasses both typical and cryptic clades and provides conclusive evidence for C. difficile infection due to clade C-II isolates that was hitherto lacking. Vigilance towards C. difficile infection as a result of cryptic clade isolates is warranted
High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5
<p>Abstract</p> <p>Background</p> <p>Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals.</p> <p>Results</p> <p>We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (<it>Tbc1d14</it>, <it>Nol14</it>, <it>Tyms</it>, <it>Cad</it>, <it>Fbxl5</it>, <it>Haus3</it>), and mutations in genes we or others previously reported (<it>Tapt1</it>, <it>Rest</it>, <it>Ugdh</it>, <it>Paxip1</it>, <it>Hmx1, Otoe, Nsun7</it>). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in <it>Tbc1d14 </it>provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis.</p> <p>Conclusion</p> <p>This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.</p
Onco-functional outcome after resection for eloquent glioblastoma (OFO):A propensity-score matched analysis of an international, multicentre, cohort study
Background: The combined impact of complete resection (oncological goal) and no functional loss (functional goal) in glioblastoma subgroups is currently unknown. This study aimed to develop a novel onco-functional outcome (OFO) to merge these two goals into one outcome, resulting in four classes: complete without deficits (OFO1), incomplete without deficits (OFO2), complete with deficits (OFO3), or incomplete with deficits (OFO4). Methods: Between 2010ā2020, 858 patients with tumor resection for eloquent glioblastoma were included. We analyzed the impact of OFO class on postoperative surgical outcomes using Cox proportional-hazards models with hazard ratios (HR) or logistic regression with odds ratios (OR), followed by specific subgroup analyses. We developed a risk model to predict OFO class preoperatively using logistic regression. Results: The OFO classification stratified the four OFO classes for overall survival (OS:19.0 versus 14.0 versus 12.0 versus 9.0 months), progression-free survival (PFS), and adjuvant therapy. OFO1 was associated with improved OS [HR= 0.67, (0.55ā0.81); p < 0.001], and PFS [HR = 0.68, (0.57ā0.81); p < 0.001] in the overall cohort and all clinical and molecular subgroups, except for MGMT-unmethylated tumors; and higher rate of adjuvant therapy [OR= 2.81, (1.71ā4.84);p < 0.001]. In patientsā„ 70 years, only OFO1 improved their survival outcomes. Safe surgery was especially important in patients with a preoperative KPS ā¤ 80 to qualify for adjuvant treatment. Awake craniotomy more often led to OFO1 compared to asleep resection [OR = 1.93, (1.19ā3.14); p = 0.008]. Conclusions: OFO1 was associated with improved OS, PFS, and receipt of adjuvant therapy in all glioblastoma patients with IDH-wildtype and MGMT-methylated tumors. Awake craniotomy was associated with achieving this optimal OFO status. Preventing deficits was more important than complete surgery.</p