2,537 research outputs found

    Uncertainty-aware multiple-instance learning for reliable classification:Application to optical coherence tomography

    Get PDF
    Deep learning classification models for medical image analysis often perform well on data from scanners that were used to acquire the training data. However, when these models are applied to data from different vendors, their performance tends to drop substantially. Artifacts that only occur within scans from specific scanners are major causes of this poor generalizability. We aimed to enhance the reliability of deep learning classification models using a novel method called Uncertainty-Based Instance eXclusion (UBIX). UBIX is an inference-time module that can be employed in multiple-instance learning (MIL) settings. MIL is a paradigm in which instances (generally crops or slices) of a bag (generally an image) contribute towards a bag-level output. Instead of assuming equal contribution of all instances to the bag-level output, UBIX detects instances corrupted due to local artifacts on-the-fly using uncertainty estimation, reducing or fully ignoring their contributions before MIL pooling. In our experiments, instances are 2D slices and bags are volumetric images, but alternative definitions are also possible. Although UBIX is generally applicable to diverse classification tasks, we focused on the staging of age-related macular degeneration in optical coherence tomography. Our models were trained on data from a single scanner and tested on external datasets from different vendors, which included vendor-specific artifacts. UBIX showed reliable behavior, with a slight decrease in performance (a decrease of the quadratic weighted kappa (κw) from 0.861 to 0.708), when applied to images from different vendors containing artifacts; while a state-of-the-art 3D neural network without UBIX suffered from a significant detriment of performance (κw from 0.852 to 0.084) on the same test set. We showed that instances with unseen artifacts can be identified with OOD detection. UBIX can reduce their contribution to the bag-level predictions, improving reliability without retraining on new data. This potentially increases the applicability of artificial intelligence models to data from other scanners than the ones for which they were developed. The source code for UBIX, including trained model weights, is publicly available through https://github.com/qurAI-amsterdam/ubix-for-reliable-classification.</p

    Congenital Prosopagnosia: Multistage Anatomical and Functional Deficits in Face Processing Circuitry

    Get PDF
    Face recognition is a primary social skill which depends on a distributed neural network. A pronounced face recognition deficit in the absence of any lesion is seen in congenital prosopagnosia. This study investigating 24 congenital prosopagnosic subjects and 25 control subjects aims at elucidating its neural basis with fMRI and voxel-based morphometry. We found a comprehensive behavioral pattern, an impairment in visual recognition for faces and buildings that spared long-term memory for faces with negative valence. Anatomical analysis revealed diminished gray matter density in the bilateral lingual gyrus, the right middle temporal gyrus, and the dorsolateral prefrontal cortex. In most of these areas, gray matter density correlated with memory success. Decreased functional activation was found in the left fusiform gyrus, a crucial area for face processing, and in the dorsolateral prefrontal cortex, whereas activation of the medial prefrontal cortex was enhanced. Hence, our data lend strength to the hypothesis that congenital prosopagnosia is explained by network dysfunction and suggest that anatomic curtailing of visual processing in the lingual gyrus plays a substantial role. The dysfunctional circuitry further encompasses the fusiform gyrus and the dorsolateral prefrontal cortex, which may contribute to their difficulties in long-term memory for complex visual information. Despite their deficits in face identity recognition, processing of emotion related information is preserved and possibly mediated by the medial prefrontal cortex. Congenital prosopagnosia may, therefore, be a blueprint of differential curtailing in networks of visual cognition

    Genetic Risk in Families with Age-Related Macular Degeneration

    Get PDF
    PURPOSE: To determine the contribution of common and rare genetic risk variants in families with age-related macular degeneration (AMD). DESIGN: Case-control study. PARTICIPANTS: A family cohort (355 affected and 342 unaffected family members from 144 families with AMD) and an unrelated case-control cohort (1078 patients, 952 controls), recruited from the European Genetic Database. METHODS: Genetic data of both cohorts were filtered for carriership of rare genetic variants in the coding and splice-site regions of the complement factor H (CFH) and complement factor I (CFI) genes, and 52 AMD-associated variants were extracted for calculation of genetic risk scores (GRS). To compare GRSs between familial and nonfamilial rare CFH and CFI variant carriers and noncarriers and between AMD disease stages, we performed a 2-way analysis of variance, with Bonferroni correction for multiple testing. Within families with AMD carrying rare CFH and CFI variants, we analyzed segregation patterns by calculating the proportion of affected among carriers. MAIN OUTCOME MEASURES: GRSs and segregation of rare CFH and CFI variants. RESULTS: We observed higher GRSs in familial versus nonfamilial individuals without rare CFH and CFI variants: mean GRS, 1.76 (standard error [SE], 0.08) versus 0.83 (SE, 0.03; P < 0.001). In 51 of 144 families (35.4%), rare CFH and CFI variants were identified. Within the AMD family cohort, carriers of rare CFH and CFI variants showed lower GRSs compared with noncarriers (mean GRS, 1.05 [SE, 0.23] vs. 1.76 [SE, 0.08]; P = 0.02). The proportion of affected family members with a high GRS was 57.3% (176/307). Of the affected family members with a low or intermediate GRS, 40.0% carried rare CFH or CFI variants. Among carriers of 11 rare CFH or CFI variants, the proportion affected by AMD was more than 75%. CONCLUSIONS: Genetic risk in families with AMD often is attributed to high GRSs based on common variants. However, in part of the families with a low or intermediate GRS, rare CFH and CFI variants contributed to disease development. We recommend computing GRSs and sequencing the CFH and CFI genes in families with AMD, in particular in the light of ongoing gene-specific clinical trials

    Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homer is a postsynaptic scaffold protein that links various synaptic signaling proteins, including the type I metabotropic glutamate receptor subunits 1α and 5, the inositol 1,4,5-trisphosphate receptor, Shank and Cdc42 small GTPase. Overexpression of Homer induces changes in dendritic spine morphology in cultured hippocampal neurons. However, the molecular basis underpinning Homer-mediated spine morphogenesis remains unclear. In this study, we aimed to elucidate the structural and functional properties of the interaction between Cupidin/Homer2 and two actin-cytoskeletal regulators, Cdc42 small GTPase and Drebrin.</p> <p>Results</p> <p>Cupidin/Homer2 interacted with activated Cdc42 small GTPase via the Cdc42-binding domain that resides around amino acid residues 191–283, within the C-terminal coiled-coil domain. We generated a Cupidin deletion mutant lacking amino acids 191–230 (CPDΔ191–230), which showed decrease Cdc42-binding ability but maintained self-multimerization ability. Cupidin suppressed Cdc42-induced filopodia-like protrusion formation in HeLa cells, whereas CPDΔ191–230 failed to do so. In cultured hippocampal neurons, Cupidin was targeted to dendritic spines, whereas CPDΔ191–230 was distributed in dendritic shafts as well as spines. Overexpression of CPDΔ191–230 decreased the number of synapses and reduced the amplitudes of miniature excitatory postsynaptic currents in hippocampal neurons. Cupidin interacted with a dendritic spine F-actin-binding protein, Drebrin, which possesses two Homer ligand motifs, via the N-terminal EVH-1 domain. CPDΔ191–230 overexpression decreased Drebrin clustering in the dendritic spines of hippocampal neurons.</p> <p>Conclusion</p> <p>These results indicate that Cupidin/Homer2 interacts with the dendritic spine actin regulators Cdc42 and Drebrin via its C-terminal and N-terminal domains, respectively, and that it may be involved in spine morphology and synaptic properties.</p

    A genome-wide scan for microrna-related genetic variants associated with primary open-angle glaucoma

    Get PDF
    PURPOSE: To identify microRNAs (miRNAs) involved in primary open-angle glaucoma (POAG), using genetic data. MiRNAs are small noncoding RNAs that posttranscriptionally regulate gene expression. Genetic variants in miRNAs or miRNA-binding sites within gene 3’-untranslated regions (3’UTRs) are expected to affect miRNA function and con
    corecore