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A B S T R A C T

Deep learning classification models for medical image analysis often perform well on data from scanners that
were used to acquire the training data. However, when these models are applied to data from different vendors,
their performance tends to drop substantially. Artifacts that only occur within scans from specific scanners are
major causes of this poor generalizability. We aimed to enhance the reliability of deep learning classification
models using a novel method called Uncertainty-Based Instance eXclusion (UBIX). UBIX is an inference-time
module that can be employed in multiple-instance learning (MIL) settings. MIL is a paradigm in which instances
(generally crops or slices) of a bag (generally an image) contribute towards a bag-level output. Instead of
assuming equal contribution of all instances to the bag-level output, UBIX detects instances corrupted due to
local artifacts on-the-fly using uncertainty estimation, reducing or fully ignoring their contributions before MIL
pooling. In our experiments, instances are 2D slices and bags are volumetric images, but alternative definitions
are also possible. Although UBIX is generally applicable to diverse classification tasks, we focused on the staging
of age-related macular degeneration in optical coherence tomography. Our models were trained on data from a
single scanner and tested on external datasets from different vendors, which included vendor-specific artifacts.
UBIX showed reliable behavior, with a slight decrease in performance (a decrease of the quadratic weighted
kappa (𝜅𝑤) from 0.861 to 0.708), when applied to images from different vendors containing artifacts; while a
state-of-the-art 3D neural network without UBIX suffered from a significant detriment of performance (𝜅𝑤 from
0.852 to 0.084) on the same test set. We showed that instances with unseen artifacts can be identified with
OOD detection. UBIX can reduce their contribution to the bag-level predictions, improving reliability without
retraining on new data. This potentially increases the applicability of artificial intelligence models to data from
other scanners than the ones for which they were developed. The source code for UBIX, including trained model

weights, is publicly available through https://github.com/qurAI-amsterdam/ubix-for-reliable-classification.
1. Introduction

Deep learning models for medical image analysis applications are
often trained on data that is acquired with one or a selected number
of scanner types and/or acquisition protocols. When applying these
trained models on data from different scanners or protocols, the per-
formance tends to plummet (Yanagihara et al., 2020; De Fauw et al.,
2018). This negatively affects the reliability of these systems, which
is a main aspect of trustworthy AI (González-Gonzalo et al., 2021;
European Commission, 2019), and its wide integration and adoption
in clinical practice. In general, convolutional neural networks (CNNs)
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are known to fail when they are applied under dataset shift or to out-
of-distribution (OOD) datasets; and approaches to address this effect
are being investigated (Ovadia et al., 2019). This OOD nature of the
data occasionally only stems from local areas in images, such as local
artifacts. These local artifacts occur frequently in data from specific
vendors or particular scanning protocols, and can be found in multi-
ple medical imaging fields, such as contrast-enhanced mammography
data (Neppalli et al., 2021) and optical coherence tomography (Baz-
vand and Ghassemi, 2020). In images with these types of artifacts, there
generally are sufficient parts in a sample which are in-distribution (ID)
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Fig. 1. Overview of the general MIL pipeline (left) and how the two UBIX variants are integrated into this pipeline (right). Each MIL instance is fed into the same classifier. During
inference time, a UBIX function converts pre-UBIX instance-level features based on their respective uncertainties to post-UBIX instance-level features. The instance-level post-UBIX
features are then converted to bag-level outputs using MIL pooling. During training, the pre-UBIX features are fed directly into the MIL pooling function. The thin dashed blue
arrows indicate the flow of one example feature and its associated uncertainty. ℎ𝑗

𝑖 is the instance-level feature value for instance 𝑖 and feature 𝑗. ℎ𝑗
𝑚𝑖𝑛 is the minimum instance-level

feature value in the validation set for feature 𝑗. 𝑈𝑖 is the uncertainty associated with instance 𝑖. 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 are the minimum and maximum uncertainty in the validation set,
respectively.
Fig. 2. Examples of real imaging artifacts in OCT. Subfigure (a) shows a normal B-scan without imaging artifacts for reference. The other subfigures show various common imaging
artifacts. The images (a) and (c) originate from the Hval dataset, while images (b), (d), and (e) originate from the Ttest dataset, and image (f) originates from the Btest dataset.
to form a correct prediction if the model would in some way only focus
on those parts of the data and neglect the OOD areas.

To achieve this increased robustness to local OOD areas in im-
ages, we propose Uncertainty-based Instance eXclusion (UBIX). This ap-
proach builds upon multiple-instance learning (MIL), a form of weakly
supervised learning popular in medical image analysis (Cheplygina
et al., 2019; Ilse et al., 2018). In MIL, a labeled bag (usually the whole
input image) consists of multiple unlabeled instances (usually image
patches, regions or slices). During deep MIL, instances are considered
individually by a neural network, and the instance-level outputs, each
contributing equally, are combined to obtain a bag-level prediction
using a MIL pooling function (Wang et al., 2018). Instead of assum-
ing equal contribution, the UBIX approach assumes that some of the
instances might be corrupted due to local artifacts, identifies these in-
stances on-the-fly using uncertainty estimation, and reduces or ignores
its contribution to the bag-level prediction using the so-called UBIX
function before the MIL pooling function (see Fig. 1). To the best of our
knowledge, this is the first method that uses OOD detection in such a
manner to increase reliability.

Although our method is applicable to any instance definition (such
as 2D or 3D patches) or bag definition, we focus on MIL problems in
2

which slices are instances and full 3D volumes are bags. Specifically,
we focus on classifying age-related macular degeneration (AMD) in
optical coherence tomography (OCT), as there is a plurality of man-
ufacturers and scanner versions in the field of OCT. Swanson and
Fujimoto (2017) list fourteen companies that produce OCT scanners
for ophthalmic applications and the type of imaging artifacts that
occur can differ substantially across scanners (Bazvand and Ghassemi,
2020). These artifacts include slices (B-scans) that are fully black due to
blinking, vertically flipped B-scans, shadows, and noise. For example,
blinking artifacts and very noisy B-scans are much less common in
certain scanners, specifically ones with higher speed and eye tracking
software (Bazvand and Ghassemi, 2020), due to internal B-scan aver-
aging and rescanning strategies (Puzyeyeva et al., 2011). A number of
examples of imaging artifacts occurring in OCT are shown in Fig. 2.

While our primary investigation centers on UBIX’s assessment in
ophthalmic applications, its potential utility spans diverse medical
image tasks. UBIX aims to increase the robustness to local imaging
artifacts, which may be under-represented during training but at least
sporadically manifest in clinical settings. A relevant example pertains
to the observation from Linmans et al. (2023) of small colon tissue

regions in a histopathology prostate training set, leading to locally



Medical Image Analysis 97 (2024) 103259C. de Vente et al.

u

OOD instances. Furthermore, various artifacts in histopathology, such
as foreign objects, scratches, elastic deformations, and fingerprints,
have been outlined by Schömig-Markiefka et al. (2021). These arti-
facts can result from natural origins, preprocessing, and digitization
steps. Wellenberg et al. (2018) discussed metal artifacts in CT scans.
Commercially available CT scanners employ a range of techniques to
address metal artifacts, leading to varied appearances of these artifacts
in scans (Wellenberg et al., 2018). In these CT and histopathology
examples, instances could be defined as crops (volumetric crops in
CT, and 2D crops in histopathology), while the whole slide image and
CT volume could be the bags. We expect that classification models
developed in these contexts may potentially benefit from UBIX as well.

We evaluate the generalizability of our proposed models by training
on data acquired with a scanner from one vendor, while evaluating
with data from scanners of other vendors. We show that UBIX increases
this generalizability using a baseline comparison. Moreover, we sys-
tematically analyze the ability of UBIX to detect OOD instances by
gradually introducing artificial image artifacts that occur naturally as
well. The trained algorithm is publicly available for inference on the
online platform of Grand Challenge.1

2. Related work

2.1. Multiple-instance learning in medical imaging

One of the most common medical application in which MIL is
applied is histopathology (Xu et al., 2019; Patil et al., 2019; Chikontwe
et al., 2020; Tomczak et al., 2018), mainly because it is very labor-
intensive and time-consuming to manually annotate entire whole slide
images on instance-level. Ilse et al. (2018) used an attention-based
MIL pooling layer and evaluated it on an MNIST-based dataset and
histopathology datasets. Other medical modalities to which MIL with
deep learning has been applied include ultrasound (Yin et al., 2019;
Shin et al., 2018), computed tomography (Han et al., 2020; Xu et al.,
2020) and magnetic resonance imaging (Zhu et al., 2021; Qiu et al.,
2021).

Several methods have been proposed to integrate confidence or
uncertainty estimation at instance-level in MIL approaches. For ex-
ample, Integrated Instance-Level and Bag-Level MIL (IIB-MIL) (Ren
et al., 2023) is a MIL approach that integrates instance-level and bag-
level supervision, using a frozen instance-level encoder pre-trained with
weak supervision. After pre-training, it optimizes the instance-level
features with a label-disambiguation module, which incorporates a con-
fidence bank, aiming to mitigate the effect of training with noisy labels.
This confidence bank is a form of uncertainty estimation but serves a
different purpose in their pipeline than the uncertainty estimation in
UBIX does.

Weakly supervised knowledge distillation (WENO) (Qu et al., 2022)
is a student–teacher framework that consists of an instance-level clas-
sifier (the student) and a bag-level classifier (the teacher). Attention-
based scores from the teacher are used to train the student. It also uses
hard positive instance mining, which relies on a form of confidence
estimation to find hard examples. In WENO, this ensures that the model
not only learns to define a positive bag from easy positive instances but
also predicts harder positive instances as positive. Even though Qu et al.
(2022) show this is an effective strategy to increase model performance,
they do not aim to increase robustness to OOD instances. This is in
contrast with the aim of UBIX.

Unlike our proposed method, these approaches may suffer from
limited robustness when transferred to other distributions, as they do
not explicitly employ methods that aim to improve robustness when
transferring to OOD data.

1 https://grand-challenge.org/algorithms/amd-classification-in-oct-with-
bix/
3

2.2. Out-of-distribution detection

OOD detection is the identification of samples that originate from
a different distribution than the training distribution. Such samples
generally have high model predictive uncertainties, given a good un-
certainty estimation method. Hendrycks and Gimpel (2016) proposed a
simple baseline for OOD detection using the maximum class probability
as confidence scores. Another early work was Monte Carlo dropout
(MC-DO), in which they leveraged dropout to estimate uncertainty (Gal
and Ghahramani, 2016). Ovadia et al. (2019) compared a number of
methods for OOD detection and uncertainty estimation including MC-
DO. They found that deep ensembling (Lakshminarayanan et al., 2017)
was one of the top-performing methods for OOD detection. Since then,
other popular methods for uncertainty estimation and OOD detection
have been published (Hsu et al., 2020; Liu et al., 2020; Tack et al.,
2020).

Uncertainty estimation has been investigated for medical image
analysis as well, such as Mehrtash et al. (2020), who used deep ensem-
bles to calibrate probabilities in segmentation maps. Calli et al. (2019)
detected incorrect orientation or anatomy in X-rays using an OOD
detection metric called FRODO, defined as the Mahalanobis distance
of test samples to samples in the train set. Furthermore, Linmans
et al. (2020, 2023) used multi-head CNNs, an approach similar to deep
ensembles, to detect images with lymphoma in histopathology as OOD
samples.

In general, uncertainty estimation in medical images are used as
an additional output to assess the behavior of the developed models
or to identify abnormalities as OOD samples. In contrast, our proposed
approach takes into account OOD detection during inference to increase
classification robustness against data shift.

2.3. Robustness against data shift in OCT

Related works have successfully applied machine learning methods
for AMD classification from OCT, but did not specifically focus on
robustness to OOD data (Apostolopoulos et al., 2017; Venhuizen et al.,
2017; Rasti et al., 2017; Kurmann et al., 2019; Lee et al., 2017; Wang
et al., 2020).

The following works studied robustness against data shift in OCT. De
Fauw et al. (2018) used an OCT segmentation network of which the
output was fed into a classification network, which in turn outputted a
referral suggestion, diagnosis probabilities for multiple retinal disease
features, such as choroidal neovascularization (CNV) and geographic
atrophy (GA), and volume estimations of drusen and epiretinal mem-
branes. The error rate on their internal test set with OCTs from the
same scanner, as the development set, i.e., Topcon, was 5.5%, but
the error rate increased to 46.6% when transferred to an external set
with OCTs from a different scanner, i.e., Heidelberg Spectralis. When
retraining their segmentation network with data from this scanner, the
error rate improved to 3.4%. Seeböck et al. (2019) and Romo-Bucheli
et al. (2020) used a CycleGAN to transform OCT scans acquired on a
device that was not used during training to have a similar appearance as
the training data. For retinal fluid (Seeböck et al., 2019; Romo-Bucheli
et al., 2020) and layer (Romo-Bucheli et al., 2020) segmentation,
they observed a generalizability improvement when applying this
domain adaptation technique, compared to traditional transformation
strategies.

The main downside of these methods is their requirement for –
albeit annotated or not – data from the new setting. Acquiring and
annotating this new data, as well as any potential retraining, is a
time-consuming and expensive process. Moreover, if these models are
unknowingly applied in settings that are highly different from the
development setting, models can fail silently, potentially causing mis-
diagnoses. We propose a method that reduces the performance drop
when a model is transferred to a setting unlike its development setting,
without the requirement for acquiring or labeling data originating from

this new setting.

https://grand-challenge.org/algorithms/amd-classification-in-oct-with-ubix/
https://grand-challenge.org/algorithms/amd-classification-in-oct-with-ubix/
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3. Methods

Our paper introduces UBIX, a method that enhances the robust-
ness of classification models to locally OOD data. Specifically, our
approach is designed for scenarios where a portion of a given sample,
such as a crop or slice of an image, differs from the training data
distribution. UBIX is implemented in the MIL paradigm and is solely
pplied during inference. It can theoretically be applied seamlessly to
ny existing MIL model that has already been trained. In Section 3.1,
e provide an introduction to MIL and related concepts. UBIX relies on

he identification of local OOD areas in the input sample, by performing
ncertainty estimation on MIL instances. In Section 3.2, we present
arious state-of-the-art uncertainty estimation methods and propose
ariants of uncertainty measures that are optimized for ordinal labels.
inally, Section 3.3 elucidates how UBIX works and how it integrates
nstance-level uncertainty estimation into MIL models.

.1. Multiple instance learning (MIL)

.1.1. The MIL paradigm
MIL is a form of supervised learning designed to address scenarios

here our dataset is organized into bags of instances. Each bag, denoted
s 𝑋 = {𝐱1,… , 𝐱𝐼}, can contain a varying number of instances, and
ach bag is associated with a bag-level label, 𝑌 ∈ {1,… , 𝐶}, where 𝐶

represents the number of possible classes. Individual instances within
a bag do not have explicit labels. During training, only bag-level labels
are available.

MIL employs an instance-level classifier, which transforms each
instance 𝐱𝑖 into a feature vector 𝐡𝑖 ∈ R𝐽 using a function parame-
terized by 𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, represented as 𝐡𝑖 = 𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (𝐱𝑖). There are two pri-
mary types of MIL approaches: instance-based and embedding-based.
In the instance-based approach, 𝐽 is equal to 𝐶, which means that the
instance-level classifier produces instance-level logits for each class.
In contrast, the embedding-based approach allows 𝐽 to represent the
number of features, potentially using a higher-dimensional space.

Once the instance-level classifier has been applied, MIL pooling is
employed to aggregate these vectors into a bag-level feature repre-
sentation, denoted as 𝐡𝑋 , using a function parameterized by 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 .
More formally, 𝐡𝑋 = 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (𝐡1,… ,𝐡𝐼 ). In most MIL pooling func-
tions, 𝐡𝑋 ∈ R𝐽 . However, when distribution pooling (Oner et al.,
2023) is used, a marginal feature distribution is estimated instead of
a single scalar value for each feature. This case is elaborated upon
further in Section 3.1.2. Following MIL pooling, a bag-level represen-
tation transformation function, parameterized by 𝜃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚, is applied
to the bag-level feature vector 𝐡𝑋 . This transformation maps 𝐡𝑋 to
the predicted bag-level label, denoted as 𝑌 , and is expressed as 𝑌 =
𝑓𝜃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝐡𝑋 ).

In deep learning-based MIL, the instance-level classifier 𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
is typically implemented as a neural network. In the instance-based
approach, the bag-level representation transformation 𝑓𝜃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 is the
identity function, enabling a direct link between each class in the bag-
level outputs and the outputs on the instance-level. In the embedding-
based approach, 𝑓𝜃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 is parameterized using a neural network.
Depending on the chosen pooling function, even the MIL pooling
function 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 may be parameterized using a neural network (see
Section 3.1.2).

3.1.2. MIL pooling functions
The MIL pooling function 𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 aggregates instance-level feature

vectors 𝐡1,… ,𝐡𝐼 , where 𝐡𝑖 = [ℎ1𝑖 ,… , ℎ𝐽𝑖 ] and ℎ𝑗𝑖 ∈ R, to a bag-level
feature vector 𝐡𝑋 = [ℎ1𝑋 ,… , ℎ𝐽𝑋 ], where ℎ𝑗𝑋 ∈ R. A requirement for
the MIL pooling function is that it can be applied to any number of
instances 𝐽 . The following common MIL pooling functions all follow
this requirement and are also described by Oner et al. (2020):
4

• Max pooling: Max pooling selects the maximum value for each
feature across all instances in the bag:

ℎ𝑗𝑋 =
𝐼

max
𝑖=1

ℎ𝑗𝑖 , for 𝑗 = 1, 2,… , 𝐽 .

• Mean pooling: Mean pooling computes the mean value of each
feature across all instances in the bag:

ℎ𝑗𝑋 = 1
𝐼

𝐼
∑

𝑖=1
ℎ𝑗𝑖 , for 𝑗 = 1, 2,… , 𝐽 .

• Attention pooling (Ilse et al., 2018): Attention pooling uses a
weighted average of instances, where the weights are determined
by a neural network. This approach allows for generating bag-
level features based on the importance of each instance. The
Attention pooling mechanism is mathematically represented as
follows:

ℎ𝑗𝑋 =
𝐼
∑

𝑖=1
𝑎𝑖ℎ

𝑗
𝑖 , for 𝑗 = 1, 2,… , 𝐽 ,

where 𝑎𝑖 are the instance-specific attention weights, calculated as:

𝑎𝑖 =
exp(𝐰𝑇 tanh(𝐕𝐡𝑇𝑖 ))

∑𝐼
𝑘=1 exp(𝐰𝑇 tanh(𝐕𝐡𝑇𝑘 ))

.

Here, 𝐰 ∈ R𝐿×1 and 𝐕 ∈ R𝐿×𝐽 are learnable parameters.
• Distribution pooling (Oner et al., 2020): Distribution pooling es-

timates marginal feature distributions for each feature dimension.
This provides a richer representation of the data, as individ-
ual features are defined as distributions instead of single scalar
values. The formula for distribution pooling involves estimating
these marginal distributions. Given instance-level feature vectors
𝐡1,… ,𝐡𝐼 , the goal is to find a bag-level representation 𝐡𝑋 =
[𝑝1𝑋 , 𝑝

2
𝑋 ,… , 𝑝𝐽𝑋 ], and 𝑝𝑗𝑋 is the estimated marginal distribution of

the feature 𝑗. The estimated marginal distribution 𝑝𝑗𝑋 is calculated
using kernel density estimation with a Gaussian kernel having a
standard deviation 𝜎:

𝑝𝑗𝑋 (𝑣) =
1
𝐼

𝐼
∑

𝑖=1

1
√

2𝜋𝜎2
𝑒−

1
2𝜎2

(𝑣−ℎ𝑗𝑖 )
2

for 𝑗 = 1, 2,… , 𝐽 .

Additionally, in order to use these distributions as vectors in
a neural network, the distributions are binned. These binned
representations ℎ𝑗𝑋 , are obtained by sampling the values 𝑣 from
𝑝𝑗𝑋 at 𝑀 equally spaced bins within the range of possible values,
𝑣𝑏 = 𝑏

𝑀−1 for 𝑏 = 0, 1,… ,𝑀 − 1. This results in ℎ𝑋𝑗 ∈ R𝑀 for
𝑗 = 1, 2,… , 𝐽 , and the binning formula can be expressed as:

ℎ𝑗𝑋 =
[

𝑝𝑗𝑋 (𝑣 = 𝑣𝑏)
|

|

|

𝑣𝑏 =
𝑏

𝑀 − 1
, 𝑏 = 0, 1,… ,𝑀 − 1

]

for 𝑗 = 1, 2,… , 𝐽 .

Distribution pooling is flexible and can capture rich information
about the distribution of features within a bag. It avoids the
loss of information associated with point estimate-based pooling
methods.

• Distribution with attention pooling (Oner et al., 2020): Distri-
bution with attention pooling combines Attention pooling with
Distribution pooling. Feature distributions are calculated in the
same way for each feature as with distribution pooling, except an
attention weight 𝑎𝑖 is incorporated:

𝑝𝑗𝑋 (𝑣) =
1
𝐼

𝐼
∑

𝑖=1
𝑎𝑖

1
√

2𝜋𝜎2
𝑒−

1
2𝜎2

(𝑣−ℎ𝑗𝑖 )
2

for 𝑗 = 1, 2,… , 𝐽 .

The instance-level weight 𝑎𝑖 is calculated in the same way as in
Attention pooling and, similarly to distribution pooling, binning
is performed to transform these distributions into vectors.
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• TransMIL (Shao et al., 2021): TransMIL is a MIL pooling method
that is based on the Transformer architecture (Vaswani et al.,
2017). The TransMIL pooling function can be expressed as fol-
lows:

𝐡𝑋 = TPT(𝐡1,… ,𝐡𝐼 ),

where the TPT is a module that consists of two Transformer
layers and a position encoding layer. Further details about the
architecture can be found in the paper from Shao et al. (2021).

.2. Uncertainty estimation

Uncertainty estimation provides a measure of the uncertainty re-
ated to the model’s prediction. In this work, we define an uncertainty
stimation technique as a function 𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 that maps input data to
single scalar representing an uncertainty estimation value. This is

ypically executed on individual samples in a dataset, but can also be
pplied to instances in MIL. Given an instance 𝐱𝑖, the uncertainty can
e estimated as 𝑈𝑖 = 𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐱𝑖).

Several uncertainty estimation techniques also need the selection
f an uncertainty measure (𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒) to aggregate multiple probability
ectors. In the last part of this section, we also define several of these
ncertainty measure functions. Some popular uncertainty estimation
echniques are:

• Deep Ensemble (Lakshminarayanan et al., 2017): This method
utilizes multiple deep networks trained with various random
model weight initializations. To estimate uncertainty, each
model’s output is considered:

𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐱𝑖) = 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,1 (𝐱𝑖),… , 𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑀 (𝐱𝑖)),

where each 𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑗 is the 𝑗-th instance-level classification model
in the ensemble and 𝑀 is the total number of models in the
ensemble.

• Monte-Carlo dropout (MC-DO) (Gal and Ghahramani, 2016):
This method estimates uncertainty by employing dropout at test
time and performing multiple forward passes:

𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐱𝑖) = 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑀𝐶𝐷𝑂
(𝐱𝑖; 𝑡1),… ,

𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑀𝐶𝐷𝑂
(𝐱𝑖; 𝑡𝑇 )),

where 𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑀𝐶𝐷𝑂
is an instance-level classification model with

dropout enabled during test-time. The term 𝑡𝑘 represents the 𝑘-th
stochastic forward pass out of a total of 𝑇 passes.

• Test-time augmentation (TTA) (Ayhan et al., 2020): This
method augments the input sample at test time and observes the
variation in the classifier’s output. The uncertainty is calculated
as:

𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝐱𝑖) = 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴𝑢𝑔1(𝐱𝑖); ),… ,

𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴𝑢𝑔𝑇 (𝐱𝑖))),

where 𝑓𝜃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is an instance-level classification model and
𝐴𝑢𝑔𝑘(𝐱𝑖) represents the application of the 𝑘th augmentation to the
instance 𝐱𝑖 out of a total of 𝑇 augmentations.

• MaxLogit (Hendrycks et al., 2019): This technique considers the
maximum logit value (before softmax) as a confidence measure.
To obtain an uncertainty value, rather than a confidence value,
we take the negative of the maximum logit value. The uncertainty
is directly given by:

𝑈𝑖 = −max(𝐥𝑖),

where 𝐥𝑖 is the logit vector for the instance 𝐱𝑖. Please note this is
the only uncertainty estimation technique described in this work
5

that does not utilize 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒.
The list below describes a number of uncertainty measures. Each
measure utilizes a function 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 that operates on a series of model
outputs for an instance, producing an uncertainty value. Given a series
of model outputs 𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 for instance 𝐱𝑖, where 𝑇 can for
example represent multiple models in an ensemble, stochastic forward
passes in MC-DO, or multiple augmentations in TTA, the uncertainty
measure function 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 produces:

𝑈𝑖 = 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 ).

• Maximum class probability:

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 ) = −
𝐶

max
𝑐=1

1
𝑇

𝑇
∑

𝑡=1
𝑝𝑖,𝑡,𝑐 ,

where 𝑈𝑖 is the uncertainty associated with instance 𝐱𝑖, 𝐶 is
the number of classes. 𝑝𝑖,𝑡,𝑐 is the probability assigned by the 𝑡-
th model, stochastic forward pass or augmentation for instance
𝐱𝑖 and class 𝑐. Since we are interested in obtaining uncertainty
values, rather than confidence values, we employ a minus-sign at
the start of the equation.

• Mean class variance:

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 ) =
1
𝐶

𝐶
∑

𝑐=1

1
𝑇

𝑇
∑

𝑡=1
(𝑝𝑖,𝑡,𝑐 − 𝜇𝑖,𝑐 )2,

where 𝜇𝑖,𝑐 =
1
𝑇
∑𝑇

𝑡=1 𝑝𝑖,𝑡,𝑐 is the mean probability of the 𝑐-th class
for instance 𝐱𝑖.

• Entropy:

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 ) = −
𝐶
∑

𝑐=1
𝜇𝑖,𝑐 log𝜇𝑖,𝑐 ,

where 𝜇𝑖,𝑐 =
1
𝑇
∑𝑇

𝑡=1 𝑝𝑖,𝑡,𝑐 is as previously defined.

For ordinal classification tasks, such as those with a staging scale,
it is critical to note that conventional uncertainty measures might not
accurately capture the differences between stages. Specifically, they
might treat uncertainties between neighboring stages the same as those
between distant stages. Consider a scenario where probabilities for
classes 1 and 2 are both 50%, rendering other classes at 0%. The
uncertainty should be lower than a scenario where class 1 and class
5 have probabilities of 50%. To address this, we propose ordinal
variants of mean class variance and entropy, known as ordinal variance
and ordinal entropy. These measures specifically consider the ordinal
relationship between classes, ensuring that larger uncertainties between
distant classes are weighted more heavily than those between closer
classes:

• Ordinal variance:

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 ) =
1
𝑇

𝑇
∑

𝑡=1
(𝑞𝑖,𝑡 − 𝜇𝑖)2,

where 𝑞𝑖,𝑡 =
∑𝐶

𝑐=1(𝑐−1) ⋅𝑝𝑖,𝑡,𝑐 represents the weighted sum of class
probabilities by their ordinal rank for instance 𝐱𝑖. This essentially
converts the class probabilities to a single scalar value, similar to
a value that a regular regression model would output. The term
𝜇𝑖 denotes the average of these weighted sums across all models
or stochastic passes, calculated as 𝜇𝑖 =

1
𝑇
∑𝑇

𝑡=1 𝑞𝑖,𝑡.
• Ordinal entropy:
𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑝𝑖,1, 𝑝𝑖,2,… , 𝑝𝑖,𝑇 ) =

−
𝐶−1
∑

𝑐=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑐
∑

𝑑=1
𝜇𝑖,𝑑 log

𝑐
∑

𝑑=1
𝜇𝑖,𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Entropy of classes up to 𝑐

+
𝐶
∑

𝑑=𝑐+1
𝜇𝑖,𝑑 log

𝐶
∑

𝑑=𝑐+1
𝜇𝑖,𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Entropy of classes beyond 𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where 𝜇𝑖,𝑐 = 1
𝑇
∑𝑇

𝑡=1 𝑝𝑖,𝑡,𝑐 represents the mean probability of
instance 𝐱𝑖 being of class 𝑐 across all models or stochastic for-
ward passes. This measure calculates multiple entropies based
on binary partitions of the classes. For every class 𝑐 except the
last class, 𝐶, it breaks down the classes into two groups: one
with classes up to 𝑐 and the other with classes greater than 𝑐. By
doing this, it constructs binary uncertainties for each partition and
computes their entropies. These entropies are then summed up,
producing a measure that captures ordinal relationships between
classes.

.3. Uncertainty-based Instance eXclusion (UBIX)

UBIX is neither a standalone MIL method, like Max pooling or
istribution pooling, nor an alternative uncertainty estimation ap-
roach, such as deep ensembles or MaxLogit. Instead, it synergistically
everages existing MIL methods and uncertainty estimation techniques.
oreover, UBIX can seamlessly integrate with a broad spectrum of MIL
ethods and uncertainty estimation techniques.

In UBIX, there is a deliberate inference-time manipulation of
nstance-level features based on the associated uncertainties. As op-
osed to assuming equal contribution, UBIX identifies instances that
ight be corrupted due to local artifacts, and reduces or ignores

he contributions of these instances on-the-fly using these associated
nstance-level uncertainties. We can categorize two distinct UBIX vari-
nts (see Fig. 1), which both perform this manipulation in a different
anner. Specifically, UBIXsoft reduces the contributions of uncertain

instances and UBIXhard fully removes their contributions.

• UBIXsoft: For clarity, we first present UBIX for a straightforward
scenario, without the intricacies introduced by techniques such
as deep ensembles or TTA. UBIXsoft is specifically designed for
scenarios where 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 employs Max pooling in conjunction with
the instance-based MIL approach. We formulate this restriction
because this UBIX variant actively reduces instance-level features
as uncertainty increases, a behavior that is appropriate solely
when Max pooling is applied.
𝑓𝑈𝐵𝐼𝑋 can be conceptualized as a modified sigmoid function.
During inference, it maps the instance-level features, 𝐡𝑖, based on
the associated uncertainty, 𝑈𝑖, to updated instance-level features.
These updated instance-level features are then used in the down-
stream MIL pipeline. The intention is for 𝑓𝑈𝐵𝐼𝑋 (𝐡𝑖, 𝑈𝑖) to remain
close to 𝐡𝑖 when uncertainty 𝑈𝑖 is minimal. Therefore, the sigmoid
function approaches 𝐡𝑖 as uncertainty decreases, i.e., the upper
asymptote is set to 𝐡𝑖. Conversely, when 𝑈𝑖 is high, we desire the
logits to be diminished. Therefore, the sigmoid function converges
towards the lowest feature value observed in the validation set as
the uncertainty increases.
More formally, the instance-level features are transformed by the
UBIX function 𝑓𝑈𝐵𝐼𝑋 as follows:

𝑓𝑈𝐵𝐼𝑋 (𝐡𝑖, 𝑈𝑖) =
𝐡𝑖 − 𝐡𝑚𝑖𝑛
1 + 𝑒𝛿(𝑈𝑖−�̂�)

+ 𝐡𝑚𝑖𝑛,

where 𝛿 is a hyperparameter dictating the smoothness of 𝑓𝑈𝐵𝐼𝑋 .
The term 𝐡𝑚𝑖𝑛 is the vector of length 𝐽 (which is equal to 𝐶 in the
instance-based approach), containing the minimum instance-level
outputs within the validation set for each class, defined as:

𝐡𝑚𝑖𝑛 = [ min
𝐱𝑖∈𝑣𝑎𝑙

{ℎ1𝑖 },… , min
𝐱𝑖∈𝑣𝑎𝑙

{ℎ𝐽𝑖 }],

with 𝑣𝑎𝑙 representing the validation dataset. The steepest gradi-
ent of 𝑓𝑈𝐵𝐼𝑋 with respect to 𝐡𝑖 occurs when 𝑈𝑖 equals �̂�, which
is defined as:

�̂�(𝛾) = 𝛾(𝑈 − 𝑈 ) + 𝑈 ,
6

𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑖𝑛 B
Table 1
CIRCL grading system.

AMD Stage Criteria

1. No AMD No drusen or small, hard drusen
only.

2. Early AMD >10 small (<63 μm), drusen and
pigmentary changes or 1–15
intermediate (63–124 μm) drusen.

3. Intermediate AMD >15 intermediate (63–124 μm)
drusen or any large (≥ 125 μm)
drusen or GA not in the central
circle of the ETDRS grid.

4. Advanced AMD: GA Presence of central GA.

5. Advanced AMD: CNV Evidence of active or previous
CNV lesion.

6. CNV without signs forAMD Chosen if CNV is present but no
drusen of any size are present
within the Field 2.

7. Cannot grade Image is regarded as not
gradable.

with 𝛾 being a tunable hyperparameter. The extremities of uncer-
tainties are described by:

𝑈𝑚𝑖𝑛 = min
𝐱𝑖∈𝑣𝑎𝑙

{𝑈𝑖},

and:

𝑈𝑚𝑎𝑥 = max
𝐱𝑖∈𝑣𝑎𝑙

{𝑈𝑖}.

In conclusion, the sole change that UBIX introduces is during the
inference phase where the MIL pooling function 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 does not
directly utilize 𝐡𝑖. Instead, 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 takes the transformed instance-
level features 𝑓𝑈𝐵𝐼𝑋 (𝐡𝑖, 𝑈𝑖) as input.
When multiple forward passes are employed during inference due
to the use of techniques like deep ensembles, TTA, or MC-DO,
the UBIX function 𝑓𝑈𝐵𝐼𝑋 operates in the same way. There will
be multiple values for 𝐡𝑖, one for each forward pass. 𝑓𝜃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
(𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (𝑓𝑈𝐵𝐼𝑋 (𝐡𝑖))) is performed separately for these different
values for 𝐡𝑖. Only the bag-level probabilities are subsequently
aggregated.

• UBIXhard: This variant of UBIX operates by fully excluding certain
instances based on their uncertainty values. Specifically, the UBIX
function is defined differently in this approach:

𝑓𝑈𝐵𝐼𝑋 (𝐡𝑖, 𝑈𝑖) =

{

𝐡𝑖 if 𝑈𝑖 ≤ 𝜏
exclude otherwise

where 𝜏 is a hyperparameter that determines the uncertainty
threshold for instance exclusion. In this approach, any instance
with an uncertainty value exceeding 𝜏 is completely excluded
from further processing.
When implementing UBIXhard, the MIL pooling function, 𝑓𝜃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 ,
is fed with a subset of instance-level features after exclusion.

. Data

.1. Data

Three different data sets from three different vendors were used to
evelop and evaluate the proposed solution: a dataset with Heidelberg
CTs served as a training set, referred to as Htrain, a validation set,

eferred to as Hval, and internal test set, referred to as Htest (Sec-
ion 4.1.1); and two external test sets were used to evaluate the
eneralizability of our models, one with Topcon scans, referred to
s Ttest, (Section 4.1.2) and one with Bioptigen scans, referred to as

test (Section 4.1.3).
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Table 2
AMD stage distribution in each dataset. The table shows the number of OCT scans.

Htrain Hval Htest Ttest Btest

No AMD 597 216 212 942 115
Early AMD 202 74 70
Intermediate AMD 329 106 114 149 269
Advanced AMD: GA 72 29 28 37
Advanced AMD: CNV 737 236 256 56

4.1.1. Heidelberg dataset (Htrain, Hval and Htest)
For development and internal testing, we used the European Genetic

atabase (EUGENDA), a large multi-center database for clinical and
olecular analysis of AMD (van de Ven et al., 2012; Fauser et al.,
011), containing 3,278 OCT from 1,013 patients in total. The training
et Htrain, validation set Hval, and test set Htest contained 1937, 661
nd 680 OCTs from 607 (60%), 202 (20%) and 204 (20%) patients,
espectively.

Manual grading of the scans was performed by the Cologne Image
eading Center and Laboratory (CIRCL). They categorized the OCTs
sing the criteria described in Table 1. Samples with grade 6 and 7
ere excluded from this study. The number of OCTs for each of the

emaining five stages is shown in Table 2. The OCTs were acquired with
Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany)

canner. We resampled all B-scans to the same pixel spacing of 13.9 μm
3.9 μm. The number of B-scans in each OCT scan was left unchanged,
hich varied from 14 to 73.

.1.2. Topcon dataset (Ttest)
One of the external test sets was derived from the Rotterdam

tudy (Ikram et al., 2017). This is a prospective cohort study in the city
f Rotterdam, the Netherlands, that started in 1990 to investigate age-
elated diseases. There were in total 1184 OCT scans available from this
ataset, originating from 713 patients. All OCTs were graded using the
isconsin Age-related maculopathy grading system (WARMGS) (Klein

t al., 1991) and manually harmonized to the CIRCL grading system.
he number of OCTs for the resulting four classes is shown in Table 2.
he OCTs from this dataset were taken with an OCT scanner from
opcon Corp., Tokyo, Japan. Each OCT volume contained 128 B-scans.
imilarly to the Heidelberg set, all B-scans were resampled to have a
ixel spacing of 13.9 μm × 3.9 μm.

.1.3. Bioptigen dataset (Btest)
The other external test set was described by Farsiu et al. (2014),

ontaining normal patients and patients with intermediate AMD. For
ach of these subjects one OCT volume, acquired with an SD-OCT scan-
er from Bioptigen, Inc (Research Triangle Parc, NC), was available.
he AREDS2 system (Chew et al., 2012) was used for grading and was
armonized to CIRCL grading system. The number of OCTs for these
wo classes is given in Table 2. All OCT volumes contained 100 B-
cans and, all B-scans were again resampled to have a pixel spacing
f 13.9 μm × 3.9 μm.

. Experimental design

.1. Vendor generalizability and interpretability

To assess vendor generalizability of UBIX, we first calculated the
erformance on the internal test set, Htest, which is from the same
istribution as the one used for training, Htrain. Subsequently, we eval-
ated the performance when transferring to the two external datasets
test and Btest. We evaluated the performance on these datasets for
BIXsoft and UBIXhard. Additionally, we compared the performance of

he proposed model with three different approaches, namely a 3D CNN
pproach, a traditional MIL approach (without UBIX) and an ensemble
f multiple MIL approaches. The 3D CNN was a ResNet-18 (He et al.,
7

e

016) with 3D convolutions and the instance-level classifiers in the MIL
pproaches were ResNet-18’s with 2D convolutions. All models in our
xperiments were trained end-to-end.

To better show the effect of the proposed methodologies on scans
ith vendor-specific artifacts, we also separately evaluated the perfor-
ance of the five aforementioned UBIX variants and baselines on a

ubset of OCT volumes in Ttest with blinking artifacts, referred to as
blink (n = 33). These volumes generally have multiple B-scans in which
he retina is not visible.

The interpretability of UBIX is illustrated qualitatively by showing
he instance-level predictions and uncertainties for several OCT scans.

.2. Effect of artificial artifacts

To demonstrate the effect of UBIX more clearly, we performed
xperiments where we artificially corrupted the dataset Ttest with arti-
acts that also occur naturally in OCT scans. The different artifact types
ere blinking artifacts, vertically flipped B-scans, shadows and noise.
ig. 3 shows a number of examples. We gradually introduced more
CT volumes with artificial artifacts and compared the performance

or UBIXsoft, UBIXhard and MIL.
When one of these artifacts was applied to an OCT volume, a portion

of the B-scans were affected, as happens in clinical scenarios. Artificial
artifacts were then added to either one or two groups of adjacent B-
scans. Both scenarios had an equal probability. The sizes of these groups
had sizes of between 2% and 15% of B-scans, which we experimentally
found to be representative of real artifacts.

Vertically flipped B-scans are caused by a Fourier-domain detection
artifact, as described by Ho et al. (2010). Shadows and noise are usually
caused by media opacities, such as corneal scarring and cataract. The
artificial artifacts were implemented as follows:

• To generate B-scans with artificial blinking artifacts, we started
with an image where all pixel values were set to 0. Next, we
added random Gaussian noise to this image. The mean of this
noise was set to the median pixel value found in the full OCT scan.
The standard deviation of this noise was matched to the standard
deviation of the OCT scan.

• The vertically flipped B-scans were generated by flipping the
B-scans along the horizontal axis.

• To generate the shadow artifact for a particular B-scan, we
adapted each A-scan (column in an OCT B-scan) 𝑎1,… , 𝑎𝐴 sepa-
rately, where 𝐴 is the number of A-scans in the B-scan. All A-scans
𝑎𝑖 were transformed using the shadow function 𝑆(𝑎𝑖):

𝑆(𝑎𝑖) = 𝑎𝑖(1 − 𝑠(𝑖)), (1)

where 𝑠(𝑖) is sampled from a normal probability density function:

𝑠(𝑖) = 1

𝜎
√

2𝜋
𝑒−

1
2 (

𝑖−𝜇
𝜎 )2 , (2)

where 𝜇 is randomly selected between 0 and 𝐴, and 𝜎 is randomly
defined between 𝐴∕4 and 3𝐴∕4. 𝜇 and 𝜎 are kept the same within
one OCT volume.

• The noise artifact is Gaussian noise added to the original image
with a mean of 0 and a standard deviation of 4 times the standard
deviation within the original OCT volume.

.3. Applicability to several MIL settings and uncertainty estimation ap-
roaches

We performed several experiments to assess the applicability of
BIX to different uncertainty estimation approaches and MIL settings.
e evaluated this on the external test sets Ttest, Tblink, and Btest. The

ncertainty measures and techniques that we evaluated were the ones
resented in Section 3.2. The MIL pooling functions we used in these
xperiments were described in Section 3.1.2.
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Fig. 3. Examples of artificial artifacts. Each row shows the middle B-scans of a random OCT volume from Ttest. The image in the first row is the original, unaltered B-scan. The
other rows each depict a different artificial artifact applied to that B-scan.
Some of the MIL pooling functions are only compatible with the
embedding-based approach. Therefore, in the experiment where we
compared these MIL pooling functions, all uncertainties were calculated
using MaxLogit, considering the other uncertainty measures cannot
be combined trivially with the embedding-based approach. Max and
Mean pooling were implemented using the instance-based MIL ap-
proach, while the Attention, Distribution, Distribution with attention,
and TransMIL pooling were implemented using the embedding-based
approach. For Attention pooling, we followed the implementation pro-
vided by Ilse et al. (2018). For Distribution and Distribution with
Attention pooling, we used the implementation provided by Oner et al.
(2023) with 128 features in the attention layers and 11 bins in the
distribution pooling layer. For TransMIL pooling, we used the im-
plementation provided by Shao et al. (2021). The deep ensembles
contained 5 models, as this was shown to be sufficient for uncertainty
estimation (Ovadia et al., 2019). For the MC-DO models, we used 𝑇 =
32 stochastic forward passes, which is consistent with what was done
by Linmans et al. (2023). For TTA we used 𝑇 = 10 different forward
passes. For the experiments with MaxLogit, we used the maximum
value in the output of the final layer of the instance-level classifier,
while only considering this maximum value for the first model in case
a deep ensemble was used. The UBIX hyperparameters were separately
optimized on the validation set Hval for each unique combination of
MIL pooling function and uncertainty estimation approach.

5.4. Metrics

For all models, to evaluate the classification performance, we calcu-
lated the area under the receiver operating characteristic curve (AUC),
where intermediate and advanced AMD stages belonged to the positive
class and the remaining stages to the negative class. Additionally, we
8

computed Cohen’s kappa score. For the datasets with more than two
classes, the quadratic weighted kappa score (𝜅𝑤) was calculated to
consider the class order. Otherwise, unweighted kappa metric was used
(𝜅).

To quantify artificial artifact detection performance for different
uncertainty measures, we used the AUC as well, where the score
was the uncertainty measure and the labels were the dichotomous
variable of whether an instance had an artificial artifact or not. Fur-
thermore, to estimate how well the uncertainty values were separated,
we evaluated the separability of the two groups, with and without
artificial artifacts, based on the uncertainty score. For this, the Xie-
Beni index (XB) is calculated, defined as the ratio between cluster
separation (i.e., the minimum squared distance between cluster centers)
and cluster compactness (i.e., the mean squared distance between each
data point and its cluster center (Xie and Beni, 1991). The lower XB,
the better the data is clustered. Statistical significance was determined
using non-parametric bootstrapping with 1000 iterations (Rutter, 2000).
We applied a Bonferroni correction to account for the number of
comparisons we made.

5.5. Training and optimization

The network weights were optimized with the Adam optimizer
(Kingma and Ba, 2014) and a learning rate of 10-4 using the cross
entropy loss. All images were normalized between 0 and 1. As a
means of regularization, we employed online data augmentation. With
a 15% probability, random affine transformations were applied of ±20◦
rotation within the B-scan plane, ±10% shearing within the B-scan
plane, ±10% zooming within the B-scan plane, ±20 voxels translation
in the horizontal and vertical direction within the B-scan plane, ±2
voxels translation in the B-scan direction. B-scans were also horizon-
tally flipped with a 15% probability. With a 30% probability, random



Medical Image Analysis 97 (2024) 103259C. de Vente et al.

a

v
{
t
{
F
M
U
p

5

d
i
l
c
t
t
t
o
c
W
c
t
v
a
o
p
u
w
I
t

6

6

a
w
e

m
e
f
m

t
a
0
t
e

w
v
w

e
t
e
b
d
U

6
p

a
a
l
t
t

F
d
t
U

6

e
i
e
B
w
a
i

7

p

additive Gaussian noise with a mean of 0 and a standard deviation of
0.1 was applied. Also with a 30% probability, we applied brightness
modifications using the power law, varying the power between 0.75
and 3. To account for class imbalance, images were sampled during
training based on their class, such that each class was sampled with
an equal probability. Because of GPU memory restrictions and given
that the input images were large, each batch contained one bag during
training and inference. We used early stopping, based on 𝜅𝑤 and with

patience of 10 000 batches.
The hyperparameters 𝜏, 𝛿 and 𝛾 were optimized on the internal

alidation set Hval. The values for 𝜏 in the grid search for UBIXhard were
𝑃𝑈,80, 𝑃𝑈,80.1,… , 𝑃𝑈,100}, where 𝑃𝑈,𝑖 is the percentile 𝑖 of all uncertain-
ies in the validation set. For the UBIX grid search, the values for 𝛿 were
1, 5, 10,… , 5 ⋅ 103, 104} and the values for 𝛾 were {−0.5,−0.45,… , 1.5}.
or UBIXsoft implemented using deep ensembles, ordinal entropy and
ax pooling, the performance was optimal at 𝛿 = 5 and 𝛾 = 1.05. For
BIXhard implemented using deep ensembles, ordinal entropy and Max
ooling, the optimal value of the hyperparameter 𝜏 was 𝑃𝑈,93.3 = 2.20.

.6. Normalization type

All MIL and UBIX models (which do not differ from MIL models
uring training) described in this section so far used batch normal-
zation (BatchNorm) (Ioffe and Szegedy, 2015) followed by a rectified
inear unit (ReLU) activation layer (Nair and Hinton, 2010) after every
onvolutional layer. This BatchNorm layer was implemented such that
he mean and variance were computed along the instance axis (rather
han the bag axis), spatial, and channel axes. This had the effect that
he instance-level classifier in these models used some information from
ther instances than the instance it was classifying, specifically when
alculating the mean and variance values that are used in this layer.
e studied the effect of replacing these BatchNorm layers with Instan-

eNorm (Ulyanov et al., 2016) layers on the generalization of both
he MIL and UBIX models. For InstanceNorm, the mean and variance
alues were only calculated along the spatial and channel axes, so not
long the bag or instance axes. Following the default implementation
f PyTorch, the BatchNorm models included learnable shift and scale
arameters, while the InstanceNorm models did not. The 3D model
sed in this paper also had a batch size of 1, so the normalization layer
as effectively InstanceNorm with learnable shift and scale parameters.

n all cases, the means and variances of the current sample, rather than
he moving averages, were used during both training and inference.

. Results

.1. Baseline comparison

In this section, we compare the performance of the two UBIX vari-
nts with three baseline models on the internal dataset. Additionally,
e explore how these models differ in performance when applied to
xternal datasets. Fig. 4 provides an overview of these comparisons.

On the internal dataset, we observe that most differences between
odels are relatively small compared to the external datasets. When

valuating on external datasets, there is a notable drop in performance
or all methods. However, this drop is consistently smaller for the UBIX
odels when considering 𝜅𝑤 as the performance metric.

UBIX exhibits superior performance in scenarios characterized by
he presence of artifacts. For instance, on the Tblink dataset, UBIX
chieves a 𝜅𝑤 of 0.708, surpassing the scores of 0.479 for only MIL,
.346 for MIL (no ensemble), and 0.084 for the 3D model. To illustrate
he interpretability of the model at the B-scan level, we provide visual
xamples of UBIXsoft predictions in Fig. 5.

In Fig. 6, we investigate the impact of introducing artificial artifacts
hen using UBIX, compared to MIL. We evaluate performance while
arying the percentage of OCT volumes affected by artificial artifacts
ithin the T dataset.
9

test
Fig. 4. Performance of UBIX, compared to the 3D and MIL baselines, evaluated on
internal and external datasets. The models were all trained and validated on Heidelberg
data (Htrain and Hval). The UBIX methods in this figure use deep ensembles with ordinal
ntropy to estimate uncertainty. The percentages displayed within the bars indicate
he difference in performance when transferring the model from the internal to the
xternal test set. Max pooling was used for each of the reported results. The horizontal
lack bars above the bar plots indicate whether there was a statistically significant
ifference (𝑝 < 0.05) between the performance on the external datasets of either of the
BIX variants and the other three models.

.2. Applicability to several MIL settings and uncertainty estimation ap-
roaches

We explored the applicability of UBIXsoft in different MIL settings
nd uncertainty estimation approaches. Figs. 7 and 8 show the gener-
lizability of UBIXsoft when using different uncertainty measures. The
atter figure show that for Ttestand 𝜅𝑤, ordinal entropy emerges as the
op-performing measure. For Btest, the two ordinal variants also show
he highest performance.

Several uncertainty estimation methods were compared in Fig. 9.
or Tblink, the biggest impact of UBIX could be observed when using
eep ensembles as the uncertainty estimation method. Fig. 10 shows
he generalizability of several MIL pooling functions and the effect of
BIX in combination with these different MIL pooling functions.

.3. Normalization type

The effect of using InstanceNorm instead of BatchNorm on gen-
ralizability for MIL and UBIX is shown in Fig. 11. Since the drop
n performance is already substantially less when transferring to the
xternal datasets for the MIL models with InstanceNorm than with
atchNorm, the effect of UBIX is less visible in this figure. However,
hen considering images with different types of artifacts than blinking
rtifacts, we found that UBIX was able to recover better than MIL, as
llustrated in Fig. 12.

. Discussion

We proposed a method using MIL with OOD detection to im-
rove the generalizability of deep learning models for classification
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Fig. 5. Examples where UBIXsoft corrects volume-level and instance-level predictions. The figure also illustrates instance-level interpretability. Each subfigure shows, from left to
right, the uncertainty per instance, the instance-level logits of the first model in the ensemble (only showing one model for clarity), the en face image (the volume averaged
over the y-axis), and two B-scans of interest. The uncertainty, logit and en face plots correspond spatially in the horizontal direction. The left and right banner in the en face
view indicate the instance-level outputs for MIL and UBIX, respectively. The B-scans on the right are highlighted in the en face view. In the bottom right of the en face views,
volume-level probabilities are shown.
Fig. 6. Robustness to different artificial artifacts of the UBIX, compared to MIL, on Ttest. The top image in each column shows an example B-scan of the artificial artifact. The plots
show the relation between the performance and the percentage of OCT volumes in the dataset that contain these artifacts. The shaded areas indicate 95% confidence intervals,
obtained using bootstrapping with 1000 iterations.
of 3D medical images. The model aims to reduce the effect of on-
the-fly detected OOD instances in the final classification of the bag.
By suppressing the contribution of OOD instances, UBIX maintains
performance on unseen data distributions, particularly images coming
from different scanners.
10
The robustness of the proposed approach was demonstrated by
transferring UBIX models and baseline models to external datasets from
different vendors. As shown in Fig. 4, UBIX variants are less prone to
substantial performance drops than the other models. On all external
datasets, either UBIX or UBIX showed better results than the
soft hard
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Fig. 7. Density plots of uncertainty estimates at instances with artificial blinking artifacts compared to uncertainty estimates at instances without artificial artifacts, applied to
Ttest. The AUC for artificial artifact detection performance and the clustering metric XB (the lower, the better) are shown above the density plots.
Fig. 8. Performance metrics for different uncertainty measures used for UBIXsoft,
evaluated on the internal and external test sets. The MIL method performance (without
UBIX) is indicated on the left of each plot. The models were all trained and validated
on Heidelberg data (Htrain and Hval). Deep ensembles were used in combination with
the reported uncertainty measures. Max pooling was used for each of the reported
results. Max. class prob. = Maximum class probability.

baseline models in terms of absolute performance. The performance
drop was most notable on Tblink, where UBIXsoft maintained a 𝜅𝑤 of
0.708, while the best and worst performing baseline models (MIL and
3D, respectively) had a 𝜅𝑤 of 0.479 and 𝜅𝑤 of 0.084, respectively. It
was expected that these performance differences were more notable on
Tblink, which only contained OCTs with blinking artifacts, because UBIX
was designed to be robust to vendor-specific artifacts.

It was noted that, depending on the inference data, it was preferable
to fully exclude the outputs of uncertain instances (UBIXhard) or to
only suppress them (UBIXsoft). From Fig. 6, we found that UBIXhard
howed better robustness than UBIXsoft for OCTs with artificial artifacts.

possible reason for this could be that some of the artificial artifacts
ighly corrupted the information, resulting in a notably strong incorrect
ignal and the requirement for full exclusion of uncertain instances.
BIXhard seemed to be especially robust to shadow artifacts, given

hat the performance barely decreased when introducing more OCT
olumes with artificial artifacts. For some external datasets and metrics,
owever, UBIXsoft achieved better results than UBIXhard, e.g., for 𝜅𝑤 on

and AUC on T .
11

blink test
The performed data augmentation might also have an effect on
generalizability. Since signal-to-noise ratios differ per scanner, noise
augmentation probably aided our models to generalize. Although we
did resample all images to have the same pixel spacing within B-scans,
the original spacings that we had could have been slightly inaccurate.
Therefore, zooming could potentially also have a positive effect on
generalizability. The same type of data augmentation was applied in all
experiments and measuring its effect was considered out of the scope
for this paper.

Large variability in B-scan spacing between scanners can also cause
features learned by 3D CNNs to be poorly generalizable. MIL, which
processes B-scans individually and combines B-scan level outputs using
a MIL pooling function to get a volume level output, improves the
robustness to this variability in slice spacing with respect to 3D models.
We observed that performance differences are minimal between a 3D
CNN and MIL when evaluated on data from the same vendor used
during training. When evaluating on data from a different vendor, a
performance drop was observed for both methods, although this drop
is much larger for the 3D method (60.0% drop in 𝜅𝑤 on Ttest) than for
MIL (29.3% in 𝜅𝑤 on Ttest).

One of the advantages of using MIL as base of the UBIX model
is that instance-level annotations are not required for training, while
the model is able to produce a classification output at this level (B-
scan level in our case) as well as calculating instance-level uncertainty.
This introduces model explainability, increasing the transparency of our
method, and allowing surveillance of its behavior.

The extent to which UBIX improves generalizability depends highly
on the quality of its underlying OOD detection. Therefore, we compared
three different commonly used uncertainty measures in combination
with deep ensembles, and we proposed two ordinal variants. On Ttest,
entropy and its ordinal variant had the highest performance in terms of
𝜅𝑤 and AUC, respectively. The ordinal variants seemed to distinguish
the B-scans with and without artificial artifacts the best. This can be
seen in the density plots of Fig. 7, and this is also reflected in the
AUC and XB values, which were best for the two ordinal variants.
Hence, the ordinal variants led to higher performances on artificial
artifacts, although in the external test sets, we find mixed observations
(see Fig. 8). A possible reason for this could be that fewer evaluation
data with real artifacts were available, resulting in a less accurate
performance measurement than when using artificial artifacts.

Furthermore, uncertainty measures for which we found the most
competitive performance in terms of 𝜅𝑤 did not always perform the best
in terms of AUC. A possible explanation for this inconsistency could be
that the properties these two metrics measure are quite different. 𝜅𝑤
measures the grading performance (i.e., the capability of distinguishing
– in case of Ttest and Tblink – four different grades), while the AUC only
measures binary classification performance (i.e., determining whether
the sample has a grade higher or lower than Intermediate AMD). There-
fore, we believe that for models with varying results like these, it
should be carefully considered which metrics are most relevant in

which clinical settings. In screening scenarios, for example, this binary



Medical Image Analysis 97 (2024) 103259C. de Vente et al.

m
o

Fig. 9. Performance metrics for different uncertainty estimation methods used for UBIXsoft, compared to MIL (without UBIX), evaluated on the internal and external test sets. The
odels were all trained and validated on Heidelberg data (Htrain and Hval). Max pooling was used for each of the reported results. For the MC-DO, TTA, and MaxLogit experiments,

ne model was used, instead of an ensemble.
Fig. 10. Performance metrics for different MIL pooling functions when using UBIXhard, compared to MIL (without UBIX), evaluated on the internal and external test sets. The
models were all trained and validated on Heidelberg data (Htrain and Hval). UBIXhard was used because UBIXsoft was only designed for MIL models that utilize Max pooling.
Uncertainties were calculated using MaxLogit in all reported UBIX models for this experiment. Ensembles of models were used for prediction in this experiment.
classification task (using the AUC as metric) may be more relevant.
Conversely, in secondary care, a more granular grading (using 𝜅𝑤 as
metric) may be desired.

In addition to the integration of various uncertainty measures with
UBIX, we also examined its performance with uncertainty estimation
techniques other than deep ensembles. As depicted in Fig. 9, deep
ensembles generally demonstrated the least performance degradation
when assessed on external datasets. This was particularly evident in
the subset featuring only blinking artifacts, denoted as T . Notably,
12

blink
the effectiveness of UBIX was most pronounced when paired with deep
ensembles. This suggests that deep ensembles may yield more precise
uncertainty estimations compared to the other three methods. This
would allow UBIX to more effectively diminish the logits for instances
in which this is needed (i.e., where the model is prone to incorrect
outputs due to OOD characteristics). This aligns with findings in the
literature (Ovadia et al., 2019), where deep ensembles were identified
as superior in detecting data shifts, outperforming other OOD detection
techniques.
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Fig. 11. Performance of models using InstanceNorm instead of BatchNorm. Results are
shown for UBIX, compared to the MIL alternatives without UBIX, evaluated on internal
and external datasets. The models were all trained and validated on Heidelberg data
(Htrain and Hval). The UBIX methods in this figure use deep ensembles with ordinal
entropy to estimate uncertainty and Max pooling as a MIL pooling function. The
percentages displayed within the bars indicate the difference in performance when
transferring the model from the internal to the external test set.

The observed variation in internal performance among different MIL
ooling functions was relatively small, particularly compared to their
xternal performance (see Fig. 10). In our comparative study of these
IL pooling functions, incorporating UBIX showed minimal effect. This
inimal effect is likely attributable to our choice of MaxLogit for
ncertainty estimation, a method identified as having limited influence
Fig. 9). Since not all MIL pooling functions could be implemented
ith the instance-based approach, we were restricted to MaxLogit

n this experiment. We leave it to future research to explore other
ncertainty estimation techniques that may be more compatible with
mbedding-based MIL pooling functions. In conjunction with Attention
ooling on the Tblink dataset, adding UBIX did show a small increase in
erformance. Both Mean and Attention pooling outperformed others on
he internal test set and the external Btest set. The unexpected efficacy

of Mean pooling, despite initial assumptions about its inadequacy in
aggregating instance scores (Ilse et al., 2018), might be attributed to the
nature of the reference standard, which relies on counting drusen across
multiple instances in the bag. Mean pooling may be able to do this more
effectively than Max pooling. The Distribution and Distribution with
attention pooling functions showed no substantial inferiority compared
to the other functions on the internal test set. However, on external test
sets, they demonstrated underperformance in terms of 𝜅𝑤. Interestingly,
these effects were less pronounced for the AUC than for 𝜅𝑤, suggesting

consistent shift in underlying probabilities.
Given the current experimental setup, it is challenging to rec-

mmend a single general strategy for future practice regarding the
est combination of uncertainty estimation technique and MIL pooling
unction for UBIX. In our experiments, we found that the optimal
ombination depended on multiple factors, such as whether these
pproaches were used with UBIXsoft or UBIXhard, the evaluation dataset,
nd the metric of interest. However, based on the experiments pre-
ented in Fig. 9 and Fig. 10, certain combinations frequently performed
est across various datasets and metrics. Specifically, for UBIXsoft with
13

ax pooling, deep ensembles as the uncertainty estimation technique U
ame out best most often. Furthermore, for UBIXhard with deep ensem-
les, Mean or Attention as the MIL pooling function frequently yielded
he best results. Therefore, we expect these should generally be good
ptions, even though more research is needed to provide more general
ecommendations.

As discussed in Section 5.6, the BatchNorm instance-level classifiers
sed in this work may use information from multiple instances, not just
he ones currently being classified. We hypothesized that this charac-
eristic might negatively impact model robustness. To test this, we also
rained models using InstanceNorm, which does not share this charac-
eristic. We found that replacing BatchNorm with InstanceNorm already
mproved the generalizability substantially (see Fig. 11). Because this
eneralizability without UBIX was already high, the effect of adding
BIX on the dataset-level metrics was negligible. However, even with

he InstanceNorm model, we found rare individual imaging artifacts in
test, to which the default model was not robust. An example of such
rtifacts is shown in Fig. 12(a). We observed that with the addition
f UBIX, the model was able to recover. Moreover, as shown before
n this section, we showed that UBIX, for certain model choices, did
nhance robustness to OOD artifacts in terms of dataset-level metrics.
his suggests that UBIX is beneficial in cases of low generalizability and
eutral otherwise.

Since the three datasets were acquired and annotated at different
ites with varying protocols, the reference standards were set differently
mong these datasets. To minimize the effect of this discrepancy, we
erged the first two classes of the CIRCL grading when evaluating
ith the WARMGS system which was available for Ttest. Moreover,
hen evaluating on Btest for which only the binary labels No AMD and
ntermediate AMD were available, we also binarized the CIRCL systems,
here the positive class started at Early AMD. This harmonization ap-
roach, however, was not perfect, causing the resulting class definitions
o still not be completely equal. Despite this discrepancy, we think
easuring performance differences between methods is still well pos-

ible. Nevertheless, the absolute performances can be underestimated
ecause of these differences in reference standards.

As a potential undesired side effect, it should be noted that difficult
ases, which are assumed to be more uncertain, could be excluded
hich are in fact necessary for making a correct prediction. It will
epend on the setting of model deployment whether the benefits of
obustness to OOD data outweigh this drawback. In screening, for
xample, a high specificity is generally considered more important than
high sensitivity. Instances that are falsely excluded by UBIX will

ften contain abnormalities, in which case especially sensitivity would
uffer, but specificity will not be affected in that case. When the task is
isease staging (as is the case in this work) and UBIX is implemented
ith an ordinal uncertainty measure, this potential undesired side-
ffect is unlikely to occur. Difficulty in such a case will usually lie
n the uncertainty between two classes that are close together in the
taging scale (such as Early AMD and Intermediate AMD), resulting in
low estimate of the ordinal uncertainty measure. As artifacts are not

ikely to cause uncertainties between two classes that are close on the
taging scale, these artifacts will probably have a much higher ordinal
ncertainty measure. To give an indication of which instances were
ssigned the highest uncertainties, we manually analyzed the B-scans
ith the highest ordinal entropies in Ttest in Section A of the Appendix.
here we found that more than half of the B-scans in the first percentile
f most uncertain ones contained one of the nine different types of
rtifacts that were seemingly related to image acquisition.

If relevant structures are entirely excluded because they are difficult
or the model to classify (for example because of an unseen lesion type
r ambiguity), this is likely to be because there is something atypical
ith the whole scan or setting in which the model is used and the
ser should be alerted. So instead of only silently excluding instances,
uture work could analyze a method for combining UBIX with alerting
he user if there are too many OOD instances detected. In future work,

BIX could also be adapted to work with patches as instances instead
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Fig. 12. Examples of UBIXsoft predictions when using InstanceNorm instead of BatchNorm. The subfigures follow the same structure as Fig. 5.
of slices. If an artifact is only locally present within a slice, the entire
slice would not be excluded and potentially useful information would
not be ignored.

We did not compare our method to any other domain adaptation
methods which often require additional supervised or unsupervised
training. Such a comparison would be unfair, as our method does
not require any additional training. Nevertheless, our approach could
potentially be further improved with the incorporation of domain
adaptation methods such as those proposed by Seeböck et al. (2019)
and Romo-Bucheli et al. (2020).

Future work could also investigate different OOD detection methods
to be incorporated in UBIX, as UBIX is theoretically compatible with
any OOD detection method. Performing a systematic analysis for OOD
detection methods was beyond the scope of this paper, so we only
applied deep ensembles in this study. Such a comparison might lead
to valuable insights and performance improvements.

We only evaluated our approach for AMD grading in OCT. The
method is expected to be applicable in more problem settings, such
as the classification of other features and retinal diseases in OCT, but
potentially also in other medical image analysis applications. Potential
applications include histopathology, in which MIL is already common
practice (Quellec et al., 2017; Ilse et al., 2018) and many types of
artifacts can occur (Schömig-Markiefka et al., 2021; Kanwal et al.,
2024; Foucart et al., 2018), and CT scans, which can contain metal
artifacts (Wellenberg et al., 2018).
14
8. Conclusion

We showed that the generalizability of classification models to un-
seen scenarios can be improved by UBIX, an approach that seamlessly
suppresses the contribution of OOD instances to the final classifica-
tion during test-time based on the uncertainty associated with these
instances, in the context of MIL for AMD classification in OCT. Our
proposed approach alleviates the need for retraining on new data,
which is an expensive process in terms of data acquisition, model
development, and human annotation time. This increases reliability by
improving the applicability of artificial intelligence models for OCT
classification in broader scopes than the settings in which they were
developed.
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