93 research outputs found

    Ueber die Ugandaaloë

    Get PDF
    n/

    Collodictyon—An Ancient Lineage in the Tree of Eukaryotes

    Get PDF
    The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution

    Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates

    Get PDF
    Understanding the early evolution and diversification of eukaryotes relies on a fully resolved phylogenetic tree. In recent years, most eukaryotic diversity has been assigned to six putative supergroups, but the evolutionary origin of a few major “orphan” lineages remains elusive. Two ecologically important orphan groups are the heterotrophic Telonemia and Centroheliozoa. Telonemids have been proposed to be related to the photosynthetic cryptomonads or stramenopiles and centrohelids to haptophytes, but molecular phylogenies have failed to provide strong support for any phylogenetic hypothesis. Here, we investigate the origins of Telonema subtilis (a telonemid) and Raphidiophrys contractilis (a centrohelid) by large-scale 454 pyrosequencing of cDNA libraries and including new genomic data from two cryptomonads (Guillardia theta and Plagioselmis nannoplanctica) and a haptophyte (Imantonia rotunda). We demonstrate that 454 sequencing of cDNA libraries is a powerful and fast method of sampling a high proportion of protist genes, which can yield ample information for phylogenomic studies. Our phylogenetic analyses of 127 genes from 72 species indicate that telonemids and centrohelids are members of an emerging major group of eukaryotes also comprising cryptomonads and haptophytes. Furthermore, this group is possibly closely related to the SAR clade comprising stramenopiles (heterokonts), alveolates, and Rhizaria. Our results link two additional heterotrophic lineages to the predominantly photosynthetic chromalveolate supergroup, providing a new framework for interpreting the evolution of eukaryotic cell structures and the diversification of plastids

    A role for diatom-like silicon transporters in calcifying coccolithophores

    Get PDF
    Biomineralization by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. It is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some globally important coccolithophores. Si is required for calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralization in diatoms and coccolithophores. Significantly, SITs and the requirement for Si are absent from highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton

    The Molecular Diversity of Freshwater Picoeukaryotes Reveals High Occurrence of Putative Parasitoids in the Plankton

    Get PDF
    Eukaryotic microorganisms have been undersampled in biodiversity studies in freshwater environments. We present an original 18S rDNA survey of freshwater picoeukaryotes sampled during spring/summer 2005, complementing an earlier study conducted in autumn 2004 in Lake Pavin (France). These studies were designed to detect the small unidentified heterotrophic flagellates (HF, 0.6–5 ”m) which are considered the main bacterivores in aquatic systems. Alveolates, Fungi and Stramenopiles represented 65% of the total diversity and differed from the dominant groups known from microscopic studies. Fungi and Telonemia taxa were restricted to the oxic zone which displayed two fold more operational taxonomic units (OTUs) than the oxycline. Temporal forcing also appeared as a driving force in the diversification within targeted organisms. Several sequences were not similar to those in databases and were considered as new or unsampled taxa, some of which may be typical of freshwater environments. Two taxa known from marine systems, the genera Telonema and Amoebophrya, were retrieved for the first time in our freshwater study. The analysis of potential trophic strategies displayed among the targeted HF highlighted the dominance of parasites and saprotrophs, and provided indications that these organisms have probably been wrongfully regarded as bacterivores in previous studies. A theoretical exercise based on a new ‘parasite/saprotroph-dominated HF hypothesis’ demonstrates that the inclusion of parasites and saprotrophs may increase the functional role of the microbial loop as a link for carbon flows in pelagic ecosystems. New interesting perspectives in aquatic microbial ecology are thus opened

    Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters

    Get PDF
    BACKGROUND:Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)(4) can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. METHODOLOGY/PRINCIPAL FINDINGS:Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. CONCLUSIONS/SIGNIFICANCE:Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins

    Magnetic starch microspheres, efficacy and elimination. A new organ-specific contrast agent for magnetic resonance imaging

    No full text
    A new particulate magnetic resonance (MR) contrast agent was prepared by controlled precipitation of iron oxide in an aqueous starch solution. The potential of the magnetic starch microspheres (MSM) as a hepatosplenic contrast enhancer was studied by MR spectroscopy and MR imaging. Intravascular administration of MSM to rodents showed an effective blood clearance and a tissue-specific localization of the substance. MSM doses in a range of 0.3-1.5 mg Fe/kg caused a 50% alteration in sensitive contrast parameters (ED50 doses) of liver and spleen. The contrast effect of MSM in liver and spleen was halved within 2 to 5 days. The approximated lethal MSM dose in mice was 150-200 mg Fe/kg. MSM is a tissue-specific MR contrast substance with high efficacy, rapid bioelimination, and low acute toxicity
    • 

    corecore