7 research outputs found

    Proteomics through integrated MALDI and ESI

    Get PDF
    Comunicaciones a congreso

    An Unusual Family of Glycosylated Peptides Isolated from Dendroaspis angusticeps Venom and Characterized by Combination of Collision Induced and Electron Transfer Dissociation

    Full text link
    This study describes the structural characterization of a totally new family of peptides from the venom of the snake green mamba (Dendroaspis angusticeps). Interestingly, these peptides differ in several points from other already known mamba toxins. First of all, they exhibit very small molecular masses, ranging from 1.3 to 2.4 kDa. The molecular mass of classical mamba toxins is in the range of 7 to 25 kDa. Secondly, the new peptides do not contain disulfide bonds, a post-translational modification commonly encountered in animal toxins. The third difference is the very high proportion of proline residues in the sequence accounting for about one third of the sequence. Finally, these new peptides reveal a carbohydrate moiety, indicating a glycosylation in the sequence. The last two features have made the structural characterization of the new peptides by mass spectrometry a real analytical challenge. Peptides were characterized by a combined use of MALDI- TOF/TOF and nanoESI-IT-ETD experiments to determine not only the peptide sequence but also the composition and the position of the carbohydrate moiety. Anyway, such small glycosylated and proline-rich toxins are totally different from any other known snake peptide and form, as a consequence, a new family of peptides

    Comparability of Steroid Collision Cross Sections Using Three Different IM-HRMS Technologies: An Interplatform Study

    No full text
    Steroids play key roles in various biological processes and are characterized by many isomeric variants which makes their unambiguous identification challenging. Ion mobility-mass spectrometry (IM-MS) has been proposed as a suitable platform for this application, particularly using collision cross section (CCS) databases obtained from differ-ent commercial IM-MS instruments. CCS is foreseen as an ideal additional identification parameter for steroids as long-term repeatability and interlaboratory reproducibility of this measurand are excellent and matrix effects are negligible. While excellent results were demonstrated for individual IM-MS technologies, a systematic comparison of CCS derived from all major commercial IM-MS technologies has not been performed. To address this gap, a comprehensive interlabor-atory comparison of 142 CCS values derived from drift tube (DTIM-MS), traveling wave (TWIM-MS) and trapped ion mo-bility (TIM-MS) platforms using a set of 87 steroids was undertaken. Besides delivering three instrument-specific CCS databases, systematic comparisons revealed excellent interlaboratory performance for 95% of the ions with CCS biases within ±1% for TIM-MS and within ±2% for TWIM-MS with respect to DTIM-MS values. However, a small fraction of ions (<1.5 %) showed larger biases of up to 7% indicating that differences in the ion conformation sampled on different in-strument types need to be further investigated. Systematic differences between CCS derived from different IM-MS analyz-ers and implications on the applicability for non-targeted analysis are critically discussed. To the best of our knowledge this is the most comprehensive interlaboratory study comparing CCS from three different IM-MS technologies for analysis of steroids and small molecules in general
    corecore