164 research outputs found

    Reasoning about Threads with Bounded Lock Chains

    Full text link
    The problem of model checking threads interacting purely via the standard synchronization primitives is key for many concurrent program analyses, particularly dataflow analysis. Unfortunately, it is undecidable even for the most commonly used synchronization primitive, i.e., mutex locks. Lock usage in concurrent programs can be characterized in terms of lock chains, where a sequence of mutex locks is said to be chained if the scopes of adjacent (non-nested) mutexes overlap. Although the model checking problem for fragments of Linear Temporal Logic (LTL) is known to be decidable for threads interacting via nested locks, i.e., chains of length one, these techniques don’t extend to pro-grams with non-nested locks used in crucial applications like databases and device drivers. We exploit the fact that lock usage patterns in real life programs do not produce unbounded lock chains. For such a framework, we show, by using the new concept of Lock Causality Automata (LCA), that pre∗-closures of regular sets of states can be computed efficiently. Leveraging this new technique then allows us to formulate decision procedures for model checking threads communicating via bounded lock chains for fragments of LTL. Our new results narrow the decidability gap for LTL model checking of threads communicating via locks by pro-viding a more refined characterization for it in terms of boundedness of lock chains rather than the current state-of-the-art, i.e., nestedness of locks (chains of length one).

    New Results for Double-Beta Decay of Mo-100 to Excited Final States of Ru-100 Using the TUNL-ITEP Apparatus

    Full text link
    The coincidence detection efficiency of the TUNL--ITEP apparatus designed for measuring half-life times of two-neutrino double-beta decay transitions to excited final states in daughter nuclei has been measured with a factor of 2.4 improved accuracy. In addition, the previous measuring time of 455 days for the study of the Mo-100 two-neutrino double-beta decay to the first excited 0+ state in Ru-100 has been increased by 450 days, and a new result (combined with the previous measurement obtained with the same apparatus) for this transition is presented: T_(1/2) = [5.5 (+1.2/-0.8) (stat) +/- 0.3 (syst)] x 10^20 y. Measured two-neutrino double-beta decay half-life times to excited states can be used to test the reliability of nuclear matrix element calculations needed for determining the effective neutrino mass from zero-neutrino double-beta decay data. We also present new limits for transitions to higher excited states in Ru-100 which, if improved, may be of interest for more exotic conjectures, like a bosonic component to neutrino statistics

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Implementación de estrategias de marketing para la empresa Importaciones Generales Nieto S. R. L. - 2017

    Get PDF
    El mercado ferretero del distrito de Nueva Cajamarca (San Martín, Perú) se encuentra en constante crecimiento, ya que cada día se destinan más áreas a la agricultura, siendo esta actividad realizada por el 55% de los pobladores del distrito. Al incrementar las áreas utilizadas para a la agricultura genera mayor demanda de herramientas y equipos para uso agrícola y forestal, generando que nuevas ferreterías inicien sus actividades comerciales. Es por ello que Importaciones Generales Nieto S.R.L. tuvo la necesidad de implementar estrategias para generar la repetición de compra por parte de los consumidores. La investigación tuvo como objetivo la implementación de estrategias generadas por un plan de marketing para lograr la repetición de compra, de esa forma aumentar el volumen de ventas y la participación de mercado. Se realizó un análisis previo de la situación de la empresa, se estudió a profundidad a los competidores, se hizo un estudio detallado del mercado donde se determinó como público objetivo a las personas que se dedican a la agricultura. Se aplicó una encuesta que permitió recolectar datos para elaborar estrategias como merchandising y publicidad; que tuvieron como fin generar un impacto positivo para la empresa. La implementación de estrategias generadas por el plan de márketing tuvo un costo de S/.2,671.25 mensuales. Como resultados por la aplicación de las estrategias fue: Las ventas del mes de noviembre fueron de S/.196,063.18, que respecto a las ventas del mes de noviembre del 2016 que fueron S/.178,869.66 esto representa un crecimiento del 9.6% de ventas mensuales.Tesi

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Signatures of muonic activation in the Majorana Demonstrator

    Get PDF
    Experiments searching for very rare processes such as neutrinoless double-beta decay require a detailed understanding of all sources of background. Signals from radioactive impurities present in construction and detector materials can be suppressed using a number of well-understood techniques. Background from in situ cosmogenic interactions can be reduced by siting an experiment deep underground. However, the next generation of such experiments have unprecedented sensitivity goals of 1028 years half-life with background rates of 10-5cts/(keV kg yr) in the region of interest. To achieve these goals, the remaining cosmogenic background must be well understood. In the work presented here, Majorana Demonstrator data are used to search for decay signatures of metastable germanium isotopes. Contributions to the region of interest in energy and time are estimated using simulations and compared to Demonstrator data. Correlated time-delayed signals are used to identify decay signatures of isotopes produced in the germanium detectors. A good agreement between expected and measured rate is found and different simulation frameworks are used to estimate the uncertainties of the predictions. The simulation campaign is then extended to characterize the background for the LEGEND experiment, a proposed tonne-scale effort searching for neutrinoless double-beta decay in Ge76

    Experimental study of C 13 (α,n) O 16 reactions in the Majorana Demonstrator calibration data

    Get PDF
    Neutron captures and delayed decays of reaction products are common sources of backgrounds in ultrarare event searches. In this work, we studied C13(α,n)O16 reactions induced by α particles emitted within the calibration sources of the Majorana Demonstrator. These sources are thorium-based calibration standards enclosed in carbon-rich materials. The reaction rate was estimated by using the 6129-keV γ rays emitted from the excited O16 states that are populated when the incoming α particles exceed the reaction Q value. Thanks to the excellent energy performance of the Demonstrator's germanium detectors, these characteristic photons can be clearly observed in the calibration data. Facilitated by Geant4 simulations, a comparison between the observed 6129-keV photon rates and predictions by a talys-based software was performed. The measurements and predictions were found to be consistent, albeit with large statistical uncertainties. This agreement provides support for background projections from (α,n) reactions in future double-beta decay search efforts
    corecore