12 research outputs found

    Human Physiology of Genetic Defects Causing Beta-cell Dysfunction

    Get PDF
    The last decade has revealed hundreds of genetic variants associated with type 2 diabetes, many especially with insulin secretion. However, the evidence for their single or combined effect on beta-cell function relies mostly on genetic association of the variants or genetic risk scores with simple traits, and few have been functionally fully characterized even in cell or animal models. Translating the measured traits into human physiology is not straightforward: none of the various indices for beta-cell function or insulin sensitivity recapitulates the dynamic interplay between glucose sensing, endogenous glucose production, insulin production and secretion, insulin clearance, insulin resistance-to name just a few factors. Because insulin sensitivity is a major determinant of physiological need of insulin, insulin secretion should be evaluated in parallel with insulin sensitivity. On the other hand, multiple physiological or pathogenic processes can either mask or unmask subtle defects in beta-cell function. Even in monogenic diabetes, a clearly pathogenic genetic variant can result in different phenotypic characteristics-or no phenotype at all. In this review, we evaluate the methods available for studying beta-cell function in humans, critically examine the evidence linking some identified variants to a specific beta-cell phenotype, and highlight areas requiring further study. (C) 2020 The Authors. Published by Elsevier Ltd.Peer reviewe

    Biliary Anomalies in Patients With HNF1B Diabetes

    Get PDF
    Context: The clinical spectrum of organogenetic anomalies associated with HNF1B mutations is heterogeneous. Besides cystic kidney disease, diabetes, and various other manifestations, odd cases of mainly neonatal and posttransplantation cholestasis have been described. The biliary phenotype is incompletely defined. Objective: To systematically characterize HNF1B-related anomalies in the bile ducts by imaging with magnetic resonance imaging (MRI) or magnetic resonance cholangiopancreatography (MRCP). Setting and Patients: Fourteen patients with HNF1B mutations in the catchment area of the Helsinki University Hospital were evaluated with upper abdominal MRI and MRCP. Blood samples and clinical history provided supplemental data on the individual phenotype. Main Outcome Measure(s): Structural anomalies in the biliary system, medical history of cholestasis, other findings in abdominal organs, diabetes and antihyperglycemic treatment, hypomagnesemia, and hyperuricemia. Results: Structural anomalies of the bile ducts were found in seven of 14 patients (50%). Six patients had choledochal cysts, which are generally considered premalignant. Conclusions: Structural anomalies of the biliary system were common in HNF1B mutation carriers. The malignant potential of HNF1B-associated choledochal cysts warrants further studies.Peer reviewe

    A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY

    Get PDF
    Correction: Volume65, Issue5 Page: 912-912 DOI: 10.1007/s00125-022-05663-z Published: MAY 2022 Early Access: MAR 2022Aims/hypothesis Systematic studies on the phenotypic consequences of variants causal of HNF1A-MODY are rare. Our aim was to assess the phenotype of carriers of a single HNF1A variant and genetic and clinical factors affecting the clinical spectrum. Methods We conducted a family-based multigenerational study by comparing heterozygous carriers of the HNF1A p.(Gly292fs) variant with the non-carrier relatives irrespective of diabetes status. During more than two decades, 145 carriers and 131 non-carriers from 12 families participated in the study, and 208 underwent an OGTT at least once. We assessed the polygenic risk score for type 2 diabetes, age at onset of diabetes and measures of body composition, as well as plasma glucose, serum insulin, proinsulin, C-peptide, glucagon and NEFA response during the OGTT. Results Half of the carriers remained free of diabetes at 23 years, one-third at 33 years and 13% even at 50 years. The median age at diagnosis was 21 years (IQR 17-35). We could not identify clinical factors affecting the age at conversion; sex, BMI, insulin sensitivity or parental carrier status had no significant effect. However, for 1 SD unit increase of a polygenic risk score for type 2 diabetes, the predicted age at diagnosis decreased by 3.2 years. During the OGTT, the carriers had higher levels of plasma glucose and lower levels of serum insulin and C-peptide than the non-carriers. The carriers were also leaner than the non-carriers (by 5.0 kg, p=0.012, and by 2.1 kg/m(2) units of BMI, p=2.2 x 10(-4), using the first adult measurements) and, possibly as a result of insulin deficiency, demonstrated higher lipolytic activity (with medians of NEFA at fasting 621 vs 441 mu mol/l, p=0.0039; at 120 min during an OGTT 117 vs 64 mu mol/l, p=3.1 x 10(-5)). Conclusions/interpretation The most common causal variant of HNF1A-MODY, p.(Gly292fs), presents not only with hyperglycaemia and insulin deficiency, but also with increased lipolysis and markedly lower adult BMI. Serum insulin was more discriminative than C-peptide between carriers and non-carriers. A considerable proportion of carriers develop diabetes after young adulthood. Even among individuals with a monogenic form of diabetes, polygenic risk of diabetes modifies the age at onset of diabetes.Peer reviewe

    An insulin hypersecretion phenotype precedes pancreatic β cell failure in MODY3 patient-specific cells

    Get PDF
    MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C β cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 β cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 β cells. Our findings identify a pathogenic mechanism leading to β cell failure in MODY3.Peer reviewe

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p
    corecore