59 research outputs found

    Power to identify a genetic predictor of antihypertensive drug response using different methods to measure blood pressure response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine whether office, home, ambulatory daytime and nighttime blood pressure (BP) responses to antihypertensive drug therapy measure the same signal and which method provides greatest power to identify genetic predictors of BP response.</p> <p>Methods</p> <p>We analyzed office, home, ambulatory daytime and nighttime BP responses in hypertensive adults randomized to atenolol (N = 242) or hydrochlorothiazide (N = 257) in the Pharmacogenomic Evaluation of Antihypertensive Responses Study. Since different measured BP responses may have different predictors, we tested the "same signal" model by using linear regression methods to determine whether known predictors of BP response depend on the method of BP measurement. We estimated signal-to-noise ratios and compared power to identify a genetic polymorphism predicting BP response measured by each method separately and by weighted averages of multiple methods.</p> <p>Results</p> <p>After adjustment for pretreatment BP level, known predictors of BP response including plasma renin activity, race, and sex were independent of the method of BP measurement. Signal-to-noise ratios were more than 2-fold greater for home and ambulatory daytime BP responses than for office and ambulatory nighttime BP responses and up to 11-fold greater for weighted averages of all four methods. Power to identify a genetic polymorphism predicting BP response was directly related to the signal-to-noise ratio and, therefore, greatest with the weighted averages.</p> <p>Conclusion</p> <p>Since different methods of measuring BP response to antihypertensive drug therapy measure the same signal, weighted averages of the BP responses measured by multiple methods minimize measurement error and optimize power to identify genetic predictors of BP response.</p

    Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nearly one-third of the United States adult population suffers from hypertension. Hydrochlorothiazide (HCTZ), one of the most commonly used medications to treat hypertension, has variable efficacy. The renal epithelial sodium channel (ENaC) provides a mechanism for fine-tuning sodium excretion, and is a major regulator of blood pressure homeostasis. <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>encode genes in a pathway that controls methylation of the histone H3 globular domain at lysine 79 (H3K79), thereby modulating expression of the ENaCα subunit. This study aimed to determine the role of variation in these regulatory genes on blood pressure response to HCTZ, and secondarily, untreated blood pressure.</p> <p>Methods</p> <p>We investigated associations between genetic variations in this candidate pathway and HCTZ blood pressure response in two separate hypertensive cohorts (clinicaltrials.gov NCT00246519 and NCT00005520). In a secondary, exploratory analysis, we measured associations between these same genetic variations and untreated blood pressure. Associations were measured by linear regression, with only associations with <it>P </it>≤ 0.01 in one cohort and replication by <it>P </it>≤ 0.05 in the other cohort considered significant.</p> <p>Results</p> <p>In one cohort, a polymorphism in <it>DOT1L </it>(rs2269879) was strongly associated with greater systolic (<it>P </it>= 0.0002) and diastolic (<it>P </it>= 0.0016) blood pressure response to hydrochlorothiazide in Caucasians. However, this association was not replicated in the other cohort. When untreated blood pressure levels were analyzed, we found directionally similar associations between a polymorphism in <it>MLLT3 </it>(rs12350051) and greater untreated systolic (<it>P </it>< 0.01 in both cohorts) and diastolic (<it>P </it>< 0.05 in both cohorts) blood pressure levels in both cohorts. However, when further replication was attempted in a third hypertensive cohort and in smaller, normotensive samples, significant associations were not observed.</p> <p>Conclusions</p> <p>Our data suggest polymorphisms in <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>are not likely associated with blood pressure response to HCTZ. However, a possibility exists that rs2269879 in <it>DOT1L </it>could be associated with HCTZ response in Caucasians. Additionally, exploratory analyses suggest rs12350051 in <it>MLLT3 </it>may be associated with untreated blood pressure in African-Americans. Replication efforts are needed to verify roles for these polymorphisms in human blood pressure regulation.</p

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Actionable exomic incidental findings in 6503 participants: challenges of variant classification

    Get PDF
    Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base

    A united statement of the global chiropractic research community against the pseudoscientific claim that chiropractic care boosts immunity.

    Get PDF
    BACKGROUND: In the midst of the coronavirus pandemic, the International Chiropractors Association (ICA) posted reports claiming that chiropractic care can impact the immune system. These claims clash with recommendations from the World Health Organization and World Federation of Chiropractic. We discuss the scientific validity of the claims made in these ICA reports. MAIN BODY: We reviewed the two reports posted by the ICA on their website on March 20 and March 28, 2020. We explored the method used to develop the claim that chiropractic adjustments impact the immune system and discuss the scientific merit of that claim. We provide a response to the ICA reports and explain why this claim lacks scientific credibility and is dangerous to the public. More than 150 researchers from 11 countries reviewed and endorsed our response. CONCLUSION: In their reports, the ICA provided no valid clinical scientific evidence that chiropractic care can impact the immune system. We call on regulatory authorities and professional leaders to take robust political and regulatory action against those claiming that chiropractic adjustments have a clinical impact on the immune system

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Large-scale exome-wide association analysis identifies loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases

    Get PDF
    White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore